diff options
| author | Ansariel <ansariel.hiller@phoenixviewer.com> | 2024-05-22 21:25:21 +0200 |
|---|---|---|
| committer | Andrey Lihatskiy <alihatskiy@productengine.com> | 2024-05-22 22:40:26 +0300 |
| commit | e2e37cced861b98de8c1a7c9c0d3a50d2d90e433 (patch) | |
| tree | 1bb897489ce524986f6196201c10ac0d8861aa5f /indra/llimage/llimage.cpp | |
| parent | 069ea06848f766466f1a281144c82a0f2bd79f3a (diff) | |
Fix line endlings
Diffstat (limited to 'indra/llimage/llimage.cpp')
| -rw-r--r-- | indra/llimage/llimage.cpp | 4968 |
1 files changed, 2484 insertions, 2484 deletions
diff --git a/indra/llimage/llimage.cpp b/indra/llimage/llimage.cpp index 4ba6d94842..b8b71cde53 100644 --- a/indra/llimage/llimage.cpp +++ b/indra/llimage/llimage.cpp @@ -1,2484 +1,2484 @@ -/**
- * @file llimage.cpp
- * @brief Base class for images.
- *
- * $LicenseInfo:firstyear=2001&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
-
-#include "linden_common.h"
-
-#include "llimageworker.h"
-#include "llimage.h"
-
-#include "llmath.h"
-#include "v4coloru.h"
-
-#include "llimagebmp.h"
-#include "llimagetga.h"
-#include "llimagej2c.h"
-#include "llimagejpeg.h"
-#include "llimagepng.h"
-#include "llimagedxt.h"
-#include "llmemory.h"
-
-#include <boost/preprocessor.hpp>
-
-//..................................................................................
-//..................................................................................
-// Helper macrose's for generate cycle unwrap templates
-//..................................................................................
-#define _UNROL_GEN_TPL_arg_0(arg)
-#define _UNROL_GEN_TPL_arg_1(arg) arg
-
-#define _UNROL_GEN_TPL_comma_0
-#define _UNROL_GEN_TPL_comma_1 BOOST_PP_COMMA()
-//..................................................................................
-#define _UNROL_GEN_TPL_ARGS_macro(z,n,seq) \
- BOOST_PP_CAT(_UNROL_GEN_TPL_arg_, BOOST_PP_MOD(n, 2))(BOOST_PP_SEQ_ELEM(n, seq)) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq))))
-
-#define _UNROL_GEN_TPL_ARGS(seq) \
- BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_ARGS_macro, seq)
-//..................................................................................
-
-#define _UNROL_GEN_TPL_TYPE_ARGS_macro(z,n,seq) \
- BOOST_PP_SEQ_ELEM(n, seq) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq))))
-
-#define _UNROL_GEN_TPL_TYPE_ARGS(seq) \
- BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_TYPE_ARGS_macro, seq)
-//..................................................................................
-#define _UNROLL_GEN_TPL_foreach_ee(z, n, seq) \
- executor<n>(_UNROL_GEN_TPL_ARGS(seq));
-
-#define _UNROLL_GEN_TPL(name, args_seq, operation, spec) \
- template<> struct name<spec> { \
- private: \
- template<S32 _idx> inline void executor(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \
- BOOST_PP_SEQ_ENUM(operation) ; \
- } \
- public: \
- inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \
- BOOST_PP_REPEAT(spec, _UNROLL_GEN_TPL_foreach_ee, args_seq) \
- } \
-};
-//..................................................................................
-#define _UNROLL_GEN_TPL_foreach_seq_macro(r, data, elem) \
- _UNROLL_GEN_TPL(BOOST_PP_SEQ_ELEM(0, data), BOOST_PP_SEQ_ELEM(1, data), BOOST_PP_SEQ_ELEM(2, data), elem)
-
-#define UNROLL_GEN_TPL(name, args_seq, operation, spec_seq) \
- /*general specialization - should not be implemented!*/ \
- template<U8> struct name { inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { /*static_assert(!"Should not be instantiated.");*/ } }; \
- BOOST_PP_SEQ_FOR_EACH(_UNROLL_GEN_TPL_foreach_seq_macro, (name)(args_seq)(operation), spec_seq)
-//..................................................................................
-//..................................................................................
-
-
-//..................................................................................
-// Generated unrolling loop templates with specializations
-//..................................................................................
-//example: for(c = 0; c < ch; ++c) comp[c] = cx[0] = 0;
-UNROLL_GEN_TPL(uroll_zeroze_cx_comp, (S32 *)(cx)(S32 *)(comp), (cx[_idx] = comp[_idx] = 0), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] >>= 4;
-UNROLL_GEN_TPL(uroll_comp_rshftasgn_constval, (S32 *)(comp)(const S32)(cval), (comp[_idx] >>= cval), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap;
-UNROLL_GEN_TPL(uroll_comp_asgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] = (cx[_idx] >> cval) * val), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy;
-UNROLL_GEN_TPL(uroll_comp_plusasgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] += (cx[_idx] >> cval) * val), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x];
-UNROLL_GEN_TPL(uroll_inp_plusasgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] += pix[_idx] * val), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x];
-UNROLL_GEN_TPL(uroll_inp_asgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] = pix[_idx] * val), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16;
-UNROLL_GEN_TPL(uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r, (S32 *)(comp)(S32 *)(cx)(S32)(apoint), (comp[_idx] = ((cx[_idx] * apoint) + (comp[_idx] * (256 - apoint))) >> 16), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8;
-UNROLL_GEN_TPL(uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r, (S32 *)(comp)(const U8 *)(pix)(S32)(apoint), (comp[_idx] = (comp[_idx] + pix[_idx] * apoint) >> 8), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12;
-UNROLL_GEN_TPL(uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r, (S32 *)(comp)(S32)(apoint)(S32 *)(cx), (comp[_idx] = ((comp[_idx] * (256-apoint)) + (cx[_idx] * apoint)) >> 12), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) *dptr++ = comp[c]&0xff;
-UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_and_ff, (U8 *&)(dptr)(S32 *)(comp), (*dptr++ = comp[_idx]&0xff), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff;
-UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff, (U8 *&)(dptr)(const U8 *)(sptr)(S32)(apoint), (*dptr++ = sptr[apoint + _idx]&0xff), (1)(3)(4));
-//example: for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
-UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff, (U8 *&)(dptr)(S32 *)(comp)(const S32)(cval), (*dptr++ = (comp[_idx]>>cval)&0xff), (1)(3)(4));
-//..................................................................................
-
-
-template<U8 ch>
-struct scale_info
-{
-public:
- std::vector<S32> xpoints;
- std::vector<const U8*> ystrides;
- std::vector<S32> xapoints, yapoints;
- S32 xup_yup;
-
-public:
- //unrolling loop types declaration
- typedef uroll_zeroze_cx_comp<ch> uroll_zeroze_cx_comp_t;
- typedef uroll_comp_rshftasgn_constval<ch> uroll_comp_rshftasgn_constval_t;
- typedef uroll_comp_asgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_asgn_cx_rshft_cval_all_mul_val_t;
- typedef uroll_comp_plusasgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t;
- typedef uroll_inp_plusasgn_pix_mul_val<ch> uroll_inp_plusasgn_pix_mul_val_t;
- typedef uroll_inp_asgn_pix_mul_val<ch> uroll_inp_asgn_pix_mul_val_t;
- typedef uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r<ch> uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t;
- typedef uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r<ch> uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t;
- typedef uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r<ch> uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t;
- typedef uroll_uref_dptr_inc_asgn_comp_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_and_ff_t;
- typedef uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff<ch> uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t;
- typedef uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t;
-
-public:
- scale_info(const U8 *src, U32 srcW, U32 srcH, U32 dstW, U32 dstH, U32 srcStride)
- : xup_yup((dstW >= srcW) + ((dstH >= srcH) << 1))
- {
- calc_x_points(srcW, dstW);
- calc_y_strides(src, srcStride, srcH, dstH);
- calc_aa_points(srcW, dstW, xup_yup&1, xapoints);
- calc_aa_points(srcH, dstH, xup_yup&2, yapoints);
- }
-
-private:
- //...........................................................................................
- void calc_x_points(U32 srcW, U32 dstW)
- {
- xpoints.resize(dstW+1);
-
- S32 val = dstW >= srcW ? 0x8000 * srcW / dstW - 0x8000 : 0;
- S32 inc = (srcW << 16) / dstW;
-
- for(U32 i = 0, j = 0; i < dstW; ++i, ++j, val += inc)
- {
- xpoints[j] = llmax(0, val >> 16);
- }
- }
- //...........................................................................................
- void calc_y_strides(const U8 *src, U32 srcStride, U32 srcH, U32 dstH)
- {
- ystrides.resize(dstH+1);
-
- S32 val = dstH >= srcH ? 0x8000 * srcH / dstH - 0x8000 : 0;
- S32 inc = (srcH << 16) / dstH;
-
- for(U32 i = 0, j = 0; i < dstH; ++i, ++j, val += inc)
- {
- ystrides[j] = src + llmax(0, val >> 16) * srcStride;
- }
- }
- //...........................................................................................
- void calc_aa_points(U32 srcSz, U32 dstSz, bool scale_up, std::vector<S32> &vp)
- {
- vp.resize(dstSz);
-
- if(scale_up)
- {
- S32 val = 0x8000 * srcSz / dstSz - 0x8000;
- S32 inc = (srcSz << 16) / dstSz;
- U32 pos;
-
- for(U32 i = 0, j = 0; i < dstSz; ++i, ++j, val += inc)
- {
- pos = val >> 16;
-
- if (pos >= (srcSz - 1))
- vp[j] = 0;
- else
- vp[j] = (val >> 8) - ((val >> 8) & 0xffffff00);
- }
- }
- else
- {
- S32 inc = (srcSz << 16) / dstSz;
- S32 Cp = ((dstSz << 14) / srcSz) + 1;
- S32 ap;
-
- for(U32 i = 0, j = 0, val = 0; i < dstSz; ++i, ++j, val += inc)
- {
- ap = ((0x100 - ((val >> 8) & 0xff)) * Cp) >> 8;
- vp[j] = ap | (Cp << 16);
- }
- }
- }
-};
-
-
-template<U8 ch>
-inline void bilinear_scale(
- const U8 *src, U32 srcW, U32 srcH, U32 srcStride
- , U8 *dst, U32 dstW, U32 dstH, U32 dstStride
- )
-{
- typedef scale_info<ch> scale_info_t;
-
- scale_info_t info(src, srcW, srcH, dstW, dstH, srcStride);
-
- const U8 *sptr;
- U8 *dptr;
- U32 x, y;
- const U8 *pix;
-
- S32 cx[ch], comp[ch];
-
-
- if(3 == info.xup_yup)
- { //scale x/y - up
- for(y = 0; y < dstH; ++y)
- {
- dptr = dst + (y * dstStride);
- sptr = info.ystrides[y];
-
- if(0 < info.yapoints[y])
- {
- for(x = 0; x < dstW; ++x)
- {
- //for(c = 0; c < ch; ++c) cx[c] = comp[c] = 0;
- typename scale_info_t::uroll_zeroze_cx_comp_t()(cx, comp);
-
- if(0 < info.xapoints[x])
- {
- pix = info.ystrides[y] + info.xpoints[x] * ch;
-
- //for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.xapoints[x]);
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]);
-
- pix += ch;
-
- //for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x];
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, info.xapoints[x]);
-
- pix += srcStride;
-
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x];
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, info.xapoints[x]);
-
- pix -= ch;
-
- //for(c = 0; c < ch; ++c) {
- // cx[c] += pix[c] * (256 - info.xapoints[x]);
- // comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16;
- // *dptr++ = comp[c]&0xff;
- //}
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, 256 - info.xapoints[x]);
- typename scale_info_t::uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t()(comp, cx, info.yapoints[y]);
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
- }
- else
- {
- pix = info.ystrides[y] + info.xpoints[x] * ch;
-
- //for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.yapoints[y]);
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256-info.yapoints[y]);
-
- pix += srcStride;
-
- //for(c = 0; c < ch; ++c) {
- // comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8;
- // *dptr++ = comp[c]&0xff;
- //}
- typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.yapoints[y]);
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
- }
- }
- }
- else
- {
- for(x = 0; x < dstW; ++x)
- {
- if(0 < info.xapoints[x])
- {
- pix = info.ystrides[y] + info.xpoints[x] * ch;
-
- //for(c = 0; c < ch; ++c) {
- // comp[c] = pix[c] * (256 - info.xapoints[x]);
- // comp[c] = (comp[c] + pix[c] * info.xapoints[x]) >> 8;
- // *dptr++ = comp[c]&0xff;
- //}
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]);
- typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.xapoints[x]);
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp);
- }
- else
- {
- //for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff;
- typename scale_info_t::uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t()(dptr, sptr, info.xpoints[x]*ch);
- }
- }
- }
- }
- }
- else if(info.xup_yup == 1)
- { //scaling down vertically
- S32 Cy, j;
- S32 yap;
-
- for(y = 0; y < dstH; y++)
- {
- Cy = info.yapoints[y] >> 16;
- yap = info.yapoints[y] & 0xffff;
-
- dptr = dst + (y * dstStride);
-
- for(x = 0; x < dstW; x++)
- {
- pix = info.ystrides[y] + info.xpoints[x] * ch;
-
- //for(c = 0; c < ch; ++c) comp[c] = pix[c] * yap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, yap);
-
- pix += srcStride;
-
- for(j = (1 << 14) - yap; j > Cy; j -= Cy, pix += srcStride)
- {
- //for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cy;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cy);
- }
-
- if(j > 0)
- {
- //for(c = 0; c < ch; ++c) comp[c] += pix[c] * j;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j);
- }
-
- if(info.xapoints[x] > 0)
- {
- pix = info.ystrides[y] + info.xpoints[x]*ch + ch;
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * yap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, yap);
-
- pix += srcStride;
- for(j = (1 << 14) - yap; j > Cy; j -= Cy)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cy;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cy);
- pix += srcStride;
- }
-
- if(j > 0)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * j;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j);
- }
-
- //for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12;
- typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.xapoints[x], cx);
- }
- else
- {
- //for(c = 0; c < ch; ++c) comp[c] >>= 4;
- typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4);
- }
-
- //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10);
- }
- }
- }
- else if(info.xup_yup == 2)
- { // scaling down horizontally
- S32 Cx, j;
- S32 xap;
-
- for(y = 0; y < dstH; y++)
- {
- dptr = dst + (y * dstStride);
-
- for(x = 0; x < dstW; x++)
- {
- Cx = info.xapoints[x] >> 16;
- xap = info.xapoints[x] & 0xffff;
-
- pix = info.ystrides[y] + info.xpoints[x] * ch;
-
- //for(c = 0; c < ch; ++c) comp[c] = pix[c] * xap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, xap);
-
- pix+=ch;
- for(j = (1 << 14) - xap; j > Cx; j -= Cx)
- {
- //for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cx;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cx);
- pix+=ch;
- }
-
- if(j > 0)
- {
- //for(c = 0; c < ch; ++c) comp[c] += pix[c] * j;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j);
- }
-
- if(info.yapoints[y] > 0)
- {
- pix = info.ystrides[y] + info.xpoints[x]*ch + srcStride;
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
-
- pix+=ch;
- for(j = (1 << 14) - xap; j > Cx; j -= Cx)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
- pix+=ch;
- }
-
- if(j > 0)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * j;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j);
- }
-
- //for(c = 0; c < ch; ++c) comp[c] = ((comp[c] * (256 - info.yapoints[y])) + ((cx[c] * info.yapoints[y]))) >> 12;
- typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.yapoints[y], cx);
- }
- else
- {
- //for(c = 0; c < ch; ++c) comp[c] >>= 4;
- typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4);
- }
-
- //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff;
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10);
- }
- }
- }
- else
- { //scale x/y - down
- S32 Cx, Cy, i, j;
- S32 xap, yap;
-
- for(y = 0; y < dstH; y++)
- {
- Cy = info.yapoints[y] >> 16;
- yap = info.yapoints[y] & 0xffff;
-
- dptr = dst + (y * dstStride);
- for(x = 0; x < dstW; x++)
- {
- Cx = info.xapoints[x] >> 16;
- xap = info.xapoints[x] & 0xffff;
-
- sptr = info.ystrides[y] + info.xpoints[x] * ch;
- pix = sptr;
- sptr += srcStride;
-
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
-
- pix+=ch;
- for(i = (1 << 14) - xap; i > Cx; i -= Cx)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
- pix+=ch;
- }
-
- if(i > 0)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
- }
-
- //for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap;
- typename scale_info_t::uroll_comp_asgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, yap);
-
- for(j = (1 << 14) - yap; j > Cy; j -= Cy)
- {
- pix = sptr;
- sptr += srcStride;
-
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
-
- pix+=ch;
- for(i = (1 << 14) - xap; i > Cx; i -= Cx)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
- pix+=ch;
- }
-
- if(i > 0)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
- }
-
- //for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy;
- typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, Cy);
- }
-
- if(j > 0)
- {
- pix = sptr;
- sptr += srcStride;
-
- //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap;
- typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap);
-
- pix+=ch;
- for(i = (1 << 14) - xap; i > Cx; i -= Cx)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx);
- pix+=ch;
- }
-
- if(i > 0)
- {
- //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i;
- typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i);
- }
-
- //for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * j;
- typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, j);
- }
-
- //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>23)&0xff;
- typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 23);
- }
- }
- } //else
-}
-
-//wrapper
-static void bilinear_scale(const U8 *src, U32 srcW, U32 srcH, U32 srcCh, U32 srcStride, U8 *dst, U32 dstW, U32 dstH, U32 dstCh, U32 dstStride)
-{
- llassert(srcCh == dstCh);
-
- switch(srcCh)
- {
- case 1:
- bilinear_scale<1>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
- break;
- case 3:
- bilinear_scale<3>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
- break;
- case 4:
- bilinear_scale<4>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride);
- break;
- default:
- llassert(!"Implement if need");
- break;
- }
-
-}
-
-//---------------------------------------------------------------------------
-// LLImage
-//---------------------------------------------------------------------------
-
-//static
-thread_local std::string LLImage::sLastThreadErrorMessage;
-bool LLImage::sUseNewByteRange = false;
-S32 LLImage::sMinimalReverseByteRangePercent = 75;
-
-//static
-void LLImage::initClass(bool use_new_byte_range, S32 minimal_reverse_byte_range_percent)
-{
- sUseNewByteRange = use_new_byte_range;
- sMinimalReverseByteRangePercent = minimal_reverse_byte_range_percent;
-}
-
-//static
-void LLImage::cleanupClass()
-{
-}
-
-//static
-const std::string& LLImage::getLastThreadError()
-{
- static const std::string noerr("No Error");
- return sLastThreadErrorMessage.empty() ? noerr : sLastThreadErrorMessage;
-}
-
-//static
-void LLImage::setLastError(const std::string& message)
-{
- sLastThreadErrorMessage = message;
-}
-
-//---------------------------------------------------------------------------
-// LLImageBase
-//---------------------------------------------------------------------------
-
-LLImageBase::LLImageBase()
-: mData(NULL),
- mDataSize(0),
- mWidth(0),
- mHeight(0),
- mComponents(0),
- mBadBufferAllocation(false),
- mAllowOverSize(false)
-{}
-
-// virtual
-LLImageBase::~LLImageBase()
-{
- deleteData(); // virtual
-}
-
-// virtual
-void LLImageBase::dump()
-{
- LL_INFOS() << "LLImageBase mComponents " << mComponents
- << " mData " << mData
- << " mDataSize " << mDataSize
- << " mWidth " << mWidth
- << " mHeight " << mHeight
- << LL_ENDL;
-}
-
-// virtual
-void LLImageBase::sanityCheck()
-{
- if (mWidth > MAX_IMAGE_SIZE
- || mHeight > MAX_IMAGE_SIZE
- || mDataSize > (S32)MAX_IMAGE_DATA_SIZE
- || mComponents > (S8)MAX_IMAGE_COMPONENTS
- )
- {
- LL_ERRS() << "Failed LLImageBase::sanityCheck "
- << "width " << mWidth
- << "height " << mHeight
- << "datasize " << mDataSize
- << "components " << mComponents
- << "data " << mData
- << LL_ENDL;
- }
-}
-
-// virtual
-void LLImageBase::deleteData()
-{
- ll_aligned_free_16(mData);
- mDataSize = 0;
- mData = NULL;
-}
-
-// virtual
-U8* LLImageBase::allocateData(S32 size)
-{
- //make this function thread-safe.
- static const U32 MAX_BUFFER_SIZE = 4096 * 4096 * 16; //256 MB
- mBadBufferAllocation = false;
-
- if (size < 0)
- {
- size = mWidth * mHeight * mComponents;
- if (size <= 0)
- {
- LL_WARNS() << llformat("LLImageBase::allocateData called with bad dimensions: %dx%dx%d",mWidth,mHeight,(S32)mComponents) << LL_ENDL;
- mBadBufferAllocation = true;
- }
- }
-
- if (!mBadBufferAllocation && (size < 1 || size > MAX_BUFFER_SIZE))
- {
- LL_INFOS() << "width: " << mWidth << " height: " << mHeight << " components: " << mComponents << LL_ENDL ;
- if(mAllowOverSize)
- {
- LL_INFOS() << "Oversize: " << size << LL_ENDL ;
- }
- else
- {
- LL_WARNS() << "LLImageBase::allocateData: bad size: " << size << LL_ENDL;
- mBadBufferAllocation = true;
- }
- }
-
- if (!mBadBufferAllocation && (!mData || size != mDataSize))
- {
- deleteData(); // virtual
- mData = (U8*)ll_aligned_malloc_16(size);
- if (!mData)
- {
- LL_WARNS() << "Failed to allocate image data size [" << size << "]" << LL_ENDL;
- mBadBufferAllocation = true;
- }
- }
-
- if (mBadBufferAllocation)
- {
- size = 0;
- mWidth = mHeight = 0;
- if (mData)
- {
- deleteData(); // virtual
- mData = NULL;
- }
- }
- mDataSize = size;
-
- return mData;
-}
-
-// virtual
-U8* LLImageBase::reallocateData(S32 size)
-{
- U8 *new_datap = (U8*)ll_aligned_malloc_16(size);
- if (!new_datap)
- {
- LL_WARNS() << "Out of memory in LLImageBase::reallocateData" << LL_ENDL;
- return 0;
- }
- if (mData)
- {
- S32 bytes = llmin(mDataSize, size);
- memcpy(new_datap, mData, bytes); /* Flawfinder: ignore */
- ll_aligned_free_16(mData) ;
- }
- mData = new_datap;
- mDataSize = size;
- mBadBufferAllocation = false;
- return mData;
-}
-
-const U8* LLImageBase::getData() const
-{
- if(mBadBufferAllocation)
- {
- LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL ;
- return NULL;
- }
-
- return mData;
-} // read only
-
-U8* LLImageBase::getData()
-{
- if(mBadBufferAllocation)
- {
- LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL;
- return NULL;
- }
-
- return mData;
-}
-
-bool LLImageBase::isBufferInvalid() const
-{
- return mBadBufferAllocation || mData == NULL;
-}
-
-void LLImageBase::setSize(S32 width, S32 height, S32 ncomponents)
-{
- mWidth = width;
- mHeight = height;
- mComponents = ncomponents;
-}
-
-U8* LLImageBase::allocateDataSize(S32 width, S32 height, S32 ncomponents, S32 size)
-{
- setSize(width, height, ncomponents);
- return allocateData(size); // virtual
-}
-
-//---------------------------------------------------------------------------
-// LLImageRaw
-//---------------------------------------------------------------------------
-
-S32 LLImageRaw::sRawImageCount = 0;
-
-LLImageRaw::LLImageRaw()
- : LLImageBase()
-{
- ++sRawImageCount;
-}
-
-LLImageRaw::LLImageRaw(U16 width, U16 height, S8 components)
- : LLImageBase()
-{
- //llassert( S32(width) * S32(height) * S32(components) <= MAX_IMAGE_DATA_SIZE );
- allocateDataSize(width, height, components);
- ++sRawImageCount;
-}
-
-LLImageRaw::LLImageRaw(const U8* data, U16 width, U16 height, S8 components)
- : LLImageBase()
-{
- if (allocateDataSize(width, height, components))
- {
- memcpy(getData(), data, width * height * components);
- }
-}
-
-LLImageRaw::LLImageRaw(U8 *data, U16 width, U16 height, S8 components, bool no_copy)
- : LLImageBase()
-{
- if(no_copy)
- {
- setDataAndSize(data, width, height, components);
- }
- else if(allocateDataSize(width, height, components))
- {
- memcpy(getData(), data, width*height*components);
- }
- ++sRawImageCount;
-}
-
-//LLImageRaw::LLImageRaw(const std::string& filename, bool j2c_lowest_mip_only)
-// : LLImageBase()
-//{
-// createFromFile(filename, j2c_lowest_mip_only);
-//}
-
-LLImageRaw::~LLImageRaw()
-{
- // NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
- // NOT LLImageRaw::deleteData()
- deleteData();
- --sRawImageCount;
-}
-
-// virtual
-U8* LLImageRaw::allocateData(S32 size)
-{
- LLImageDataLock lock(this);
-
- U8* res = LLImageBase::allocateData(size);
- return res;
-}
-
-// virtual
-U8* LLImageRaw::reallocateData(S32 size)
-{
- LLImageDataLock lock(this);
-
- U8* res = LLImageBase::reallocateData(size);
- return res;
-}
-
-void LLImageRaw::releaseData()
-{
- LLImageDataLock lock(this);
-
- LLImageBase::setSize(0, 0, 0);
- LLImageBase::setDataAndSize(nullptr, 0);
-}
-
-// virtual
-void LLImageRaw::deleteData()
-{
- LLImageDataLock lock(this);
-
- LLImageBase::deleteData();
-}
-
-void LLImageRaw::setDataAndSize(U8 *data, S32 width, S32 height, S8 components)
-{
- LLImageDataLock lock(this);
-
- if(data == getData())
- {
- return ;
- }
-
- deleteData();
-
- LLImageBase::setSize(width, height, components) ;
- LLImageBase::setDataAndSize(data, width * height * components) ;
-}
-
-bool LLImageRaw::resize(U16 width, U16 height, S8 components)
-{
- LLImageDataLock lock(this);
-
- if ((getWidth() == width) && (getHeight() == height) && (getComponents() == components) && !isBufferInvalid())
- {
- return true;
- }
- // Reallocate the data buffer.
- deleteData();
-
- allocateDataSize(width,height,components);
-
- return !isBufferInvalid();
-}
-
-bool LLImageRaw::setSubImage(U32 x_pos, U32 y_pos, U32 width, U32 height,
- const U8 *data, U32 stride, bool reverse_y)
-{
- LLImageDataLock lock(this);
-
- if (!getData())
- {
- return false;
- }
- if (!data)
- {
- return false;
- }
-
- // Should do some simple bounds checking
-
- U32 i;
- for (i = 0; i < height; i++)
- {
- const U32 row = reverse_y ? height - 1 - i : i;
- const U32 from_offset = row * ((stride == 0) ? width*getComponents() : stride);
- const U32 to_offset = (y_pos + i)*getWidth() + x_pos;
- memcpy(getData() + to_offset*getComponents(), /* Flawfinder: ignore */
- data + from_offset, getComponents()*width);
- }
-
- return true;
-}
-
-void LLImageRaw::clear(U8 r, U8 g, U8 b, U8 a)
-{
- llassert( getComponents() <= 4 );
-
- LLImageDataLock lock(this);
-
- // This is fairly bogus, but it'll do for now.
- if (isBufferInvalid())
- {
- LL_WARNS() << "Invalid image buffer" << LL_ENDL;
- return;
- }
-
- U8 *pos = getData();
- U32 x, y;
- for (x = 0; x < getWidth(); x++)
- {
- for (y = 0; y < getHeight(); y++)
- {
- *pos = r;
- pos++;
- if (getComponents() == 1)
- {
- continue;
- }
- *pos = g;
- pos++;
- if (getComponents() == 2)
- {
- continue;
- }
- *pos = b;
- pos++;
- if (getComponents() == 3)
- {
- continue;
- }
- *pos = a;
- pos++;
- }
- }
-}
-
-// Reverses the order of the rows in the image
-void LLImageRaw::verticalFlip()
-{
- LLImageDataLock lock(this);
-
- S32 row_bytes = getWidth() * getComponents();
- llassert(row_bytes > 0);
- std::vector<U8> line_buffer(row_bytes);
- S32 mid_row = getHeight() / 2;
- for( S32 row = 0; row < mid_row; row++ )
- {
- U8* row_a_data = getData() + row * row_bytes;
- U8* row_b_data = getData() + (getHeight() - 1 - row) * row_bytes;
- memcpy( &line_buffer[0], row_a_data, row_bytes );
- memcpy( row_a_data, row_b_data, row_bytes );
- memcpy( row_b_data, &line_buffer[0], row_bytes );
- }
-}
-
-
-bool LLImageRaw::optimizeAwayAlpha()
-{
- LLImageDataLock lock(this);
-
- if (getComponents() == 4)
- {
- U8* data = getData();
- U32 pixels = getWidth() * getHeight();
-
- // check alpha channel for all 255
- for (U32 i = 0; i < pixels; ++i)
- {
- if (data[i * 4 + 3] != 255)
- {
- return false;
- }
- }
-
- // alpha channel is all 255, make a new copy of data without alpha channel
- U8* new_data = (U8*) ll_aligned_malloc_16(getWidth() * getHeight() * 3);
-
- for (U32 i = 0; i < pixels; ++i)
- {
- U32 di = i * 3;
- U32 si = i * 4;
- for (U32 j = 0; j < 3; ++j)
- {
- new_data[di+j] = data[si+j];
- }
- }
-
- setDataAndSize(new_data, getWidth(), getHeight(), 3);
-
- return true;
- }
-
- return false;
-}
-
-void LLImageRaw::expandToPowerOfTwo(S32 max_dim, bool scale_image)
-{
- LLImageDataLock lock(this);
-
- // Find new sizes
- S32 new_width = expandDimToPowerOfTwo(getWidth(), max_dim);
- S32 new_height = expandDimToPowerOfTwo(getHeight(), max_dim);
-
- scale( new_width, new_height, scale_image );
-}
-
-void LLImageRaw::contractToPowerOfTwo(S32 max_dim, bool scale_image)
-{
- LLImageDataLock lock(this);
-
- // Find new sizes
- S32 new_width = contractDimToPowerOfTwo(getWidth(), MIN_IMAGE_SIZE);
- S32 new_height = contractDimToPowerOfTwo(getHeight(), MIN_IMAGE_SIZE);
-
- scale( new_width, new_height, scale_image );
-}
-
-// static
-S32 LLImageRaw::biasedDimToPowerOfTwo(S32 curr_dim, S32 max_dim)
-{
- // Strong bias towards rounding down (to save bandwidth)
- // No bias would mean THRESHOLD == 1.5f;
- const F32 THRESHOLD = 1.75f;
-
- // Find new sizes
- S32 larger_dim = max_dim; // 2^n >= curr_dim
- S32 smaller_dim = max_dim; // 2^(n-1) <= curr_dim
- while( (smaller_dim > curr_dim) && (smaller_dim > MIN_IMAGE_SIZE) )
- {
- larger_dim = smaller_dim;
- smaller_dim >>= 1;
- }
- return ( ((F32)curr_dim / (F32)smaller_dim) > THRESHOLD ) ? larger_dim : smaller_dim;
-}
-
-// static
-S32 LLImageRaw::expandDimToPowerOfTwo(S32 curr_dim, S32 max_dim)
-{
- S32 new_dim = MIN_IMAGE_SIZE;
- while( (new_dim < curr_dim) && (new_dim < max_dim) )
- {
- new_dim <<= 1;
- }
- return new_dim;
-}
-
-// static
-S32 LLImageRaw::contractDimToPowerOfTwo(S32 curr_dim, S32 min_dim)
-{
- S32 new_dim = MAX_IMAGE_SIZE;
- while( (new_dim > curr_dim) && (new_dim > min_dim) )
- {
- new_dim >>= 1;
- }
- return new_dim;
-}
-
-void LLImageRaw::biasedScaleToPowerOfTwo(S32 max_dim)
-{
- LLImageDataLock lock(this);
-
- // Find new sizes
- S32 new_width = biasedDimToPowerOfTwo(getWidth(),max_dim);
- S32 new_height = biasedDimToPowerOfTwo(getHeight(),max_dim);
-
- scale( new_width, new_height );
-}
-
-// static
-// Calculates (U8)(255*(a/255.f)*(b/255.f) + 0.5f). Thanks, Jim Blinn!
-inline U8 LLImageRaw::fastFractionalMult( U8 a, U8 b )
-{
- U32 i = a * b + 128;
- return U8((i + (i>>8)) >> 8);
-}
-
-
-void LLImageRaw::composite( const LLImageRaw* src )
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataSharedLock lockIn(src);
- LLImageDataLock lockOut(this);
-
- if (!validateSrcAndDst("LLImageRaw::composite", src, dst))
- {
- return;
- }
-
- llassert(3 == src->getComponents());
- llassert(3 == dst->getComponents());
-
- if( 3 == dst->getComponents() )
- {
- if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
- {
- // No scaling needed
- if( 3 == src->getComponents() )
- {
- copyUnscaled( src ); // alpha is one so just copy the data.
- }
- else
- {
- compositeUnscaled4onto3( src );
- }
- }
- else
- {
- if( 3 == src->getComponents() )
- {
- copyScaled( src ); // alpha is one so just copy the data.
- }
- else
- {
- compositeScaled4onto3( src );
- }
- }
- }
-}
-
-
-// Src and dst can be any size. Src has 4 components. Dst has 3 components.
-void LLImageRaw::compositeScaled4onto3(const LLImageRaw* src)
-{
- LL_INFOS() << "compositeScaled4onto3" << LL_ENDL;
-
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataLock lock(this);
-
- llassert( (4 == src->getComponents()) && (3 == dst->getComponents()) );
-
- S32 temp_data_size = src->getWidth() * dst->getHeight() * src->getComponents();
- llassert_always(temp_data_size > 0);
- std::vector<U8> temp_buffer(temp_data_size);
-
- // Vertical: scale but no composite
- for( S32 col = 0; col < src->getWidth(); col++ )
- {
- copyLineScaled( src->getData() + (src->getComponents() * col), &temp_buffer[0] + (src->getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
- }
-
- // Horizontal: scale and composite
- for( S32 row = 0; row < dst->getHeight(); row++ )
- {
- compositeRowScaled4onto3( &temp_buffer[0] + (src->getComponents() * src->getWidth() * row), dst->getData() + (dst->getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth() );
- }
-}
-
-
-// Src and dst are same size. Src has 4 components. Dst has 3 components.
-void LLImageRaw::compositeUnscaled4onto3( const LLImageRaw* src )
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataLock lock(this);
-
- llassert( (3 == src->getComponents()) || (4 == src->getComponents()) );
- llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
-
- const U8* src_data = src->getData();
- U8* dst_data = dst->getData();
- S32 pixels = getWidth() * getHeight();
- while( pixels-- )
- {
- U8 alpha = src_data[3];
- if( alpha )
- {
- if( 255 == alpha )
- {
- dst_data[0] = src_data[0];
- dst_data[1] = src_data[1];
- dst_data[2] = src_data[2];
- }
- else
- {
-
- U8 transparency = 255 - alpha;
- dst_data[0] = fastFractionalMult( dst_data[0], transparency ) + fastFractionalMult( src_data[0], alpha );
- dst_data[1] = fastFractionalMult( dst_data[1], transparency ) + fastFractionalMult( src_data[1], alpha );
- dst_data[2] = fastFractionalMult( dst_data[2], transparency ) + fastFractionalMult( src_data[2], alpha );
- }
- }
-
- src_data += 4;
- dst_data += 3;
- }
-}
-
-
-void LLImageRaw::copyUnscaledAlphaMask( const LLImageRaw* src, const LLColor4U& fill)
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataSharedLock lockIn(src);
- LLImageDataLock lockOut(this);
-
- if (!validateSrcAndDst("LLImageRaw::copyUnscaledAlphaMask", src, dst))
- {
- return;
- }
-
- llassert( 1 == src->getComponents() );
- llassert( 4 == dst->getComponents() );
- llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
-
- S32 pixels = getWidth() * getHeight();
- const U8* src_data = src->getData();
- U8* dst_data = dst->getData();
- for ( S32 i = 0; i < pixels; i++ )
- {
- dst_data[0] = fill.mV[0];
- dst_data[1] = fill.mV[1];
- dst_data[2] = fill.mV[2];
- dst_data[3] = src_data[0];
- src_data += 1;
- dst_data += 4;
- }
-}
-
-
-// Fill the buffer with a constant color
-void LLImageRaw::fill( const LLColor4U& color )
-{
- LLImageDataLock lock(this);
-
- if (isBufferInvalid())
- {
- LL_WARNS() << "Invalid image buffer" << LL_ENDL;
- return;
- }
-
- S32 pixels = getWidth() * getHeight();
- if( 4 == getComponents() )
- {
- U32* data = (U32*) getData();
- U32 rgbaColor = color.asRGBA();
- for( S32 i = 0; i < pixels; i++ )
- {
- data[ i ] = rgbaColor;
- }
- }
- else
- if( 3 == getComponents() )
- {
- U8* data = getData();
- for( S32 i = 0; i < pixels; i++ )
- {
- data[0] = color.mV[0];
- data[1] = color.mV[1];
- data[2] = color.mV[2];
- data += 3;
- }
- }
-}
-
-LLPointer<LLImageRaw> LLImageRaw::duplicate()
-{
- if(getNumRefs() < 2)
- {
- return this; //nobody else refences to this image, no need to duplicate.
- }
-
- LLImageDataSharedLock lock(this);
-
- //make a duplicate
- LLPointer<LLImageRaw> dup = new LLImageRaw(getData(), getWidth(), getHeight(), getComponents());
- return dup;
-}
-
-// Src and dst can be any size. Src and dst can each have 3 or 4 components.
-void LLImageRaw::copy(const LLImageRaw* src)
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataSharedLock lockIn(src);
- LLImageDataLock lockOut(this);
-
- if (!validateSrcAndDst("LLImageRaw::copy", src, dst))
- {
- return;
- }
-
- if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
- {
- // No scaling needed
- if( src->getComponents() == dst->getComponents() )
- {
- copyUnscaled( src );
- }
- else
- if( 3 == src->getComponents() )
- {
- copyUnscaled3onto4( src );
- }
- else
- {
- // 4 == src->getComponents()
- copyUnscaled4onto3( src );
- }
- }
- else
- {
- // Scaling needed
- // No scaling needed
- if( src->getComponents() == dst->getComponents() )
- {
- copyScaled( src );
- }
- else
- if( 3 == src->getComponents() )
- {
- copyScaled3onto4( src );
- }
- else
- {
- // 4 == src->getComponents()
- copyScaled4onto3( src );
- }
- }
-}
-
-// Src and dst are same size. Src and dst have same number of components.
-void LLImageRaw::copyUnscaled(const LLImageRaw* src)
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataLock lock(this);
-
- llassert( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
- llassert( src->getComponents() == dst->getComponents() );
- llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
-
- memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
-}
-
-
-// Src and dst can be any size. Src has 3 components. Dst has 4 components.
-void LLImageRaw::copyScaled3onto4(const LLImageRaw* src)
-{
- llassert( (3 == src->getComponents()) && (4 == getComponents()) );
-
- // Slow, but simple. Optimize later if needed.
- LLImageRaw temp( src->getWidth(), src->getHeight(), 4);
- temp.copyUnscaled3onto4( src );
- copyScaled( &temp );
-}
-
-
-// Src and dst can be any size. Src has 4 components. Dst has 3 components.
-void LLImageRaw::copyScaled4onto3(const LLImageRaw* src)
-{
- llassert( (4 == src->getComponents()) && (3 == getComponents()) );
-
- // Slow, but simple. Optimize later if needed.
- LLImageRaw temp( src->getWidth(), src->getHeight(), 3);
- temp.copyUnscaled4onto3( src );
- copyScaled( &temp );
-}
-
-
-// Src and dst are same size. Src has 4 components. Dst has 3 components.
-void LLImageRaw::copyUnscaled4onto3( const LLImageRaw* src )
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataLock lock(this);
-
- llassert( (3 == dst->getComponents()) && (4 == src->getComponents()) );
- llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
-
- S32 pixels = getWidth() * getHeight();
- const U8* src_data = src->getData();
- U8* dst_data = dst->getData();
- for( S32 i=0; i<pixels; i++ )
- {
- dst_data[0] = src_data[0];
- dst_data[1] = src_data[1];
- dst_data[2] = src_data[2];
- src_data += 4;
- dst_data += 3;
- }
-}
-
-
-// Src and dst are same size. Src has 3 components. Dst has 4 components.
-void LLImageRaw::copyUnscaled3onto4( const LLImageRaw* src )
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataLock lock(this);
-
- llassert( 3 == src->getComponents() );
- llassert( 4 == dst->getComponents() );
- llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
-
- S32 pixels = getWidth() * getHeight();
- const U8* src_data = src->getData();
- U8* dst_data = dst->getData();
- for( S32 i=0; i<pixels; i++ )
- {
- dst_data[0] = src_data[0];
- dst_data[1] = src_data[1];
- dst_data[2] = src_data[2];
- dst_data[3] = 255;
- src_data += 3;
- dst_data += 4;
- }
-}
-
-
-// Src and dst can be any size. Src and dst have same number of components.
-void LLImageRaw::copyScaled( const LLImageRaw* src )
-{
- LLImageRaw* dst = this; // Just for clarity.
-
- LLImageDataSharedLock lockIn(src);
- LLImageDataLock lockOut(this);
-
- if (!validateSrcAndDst("LLImageRaw::copyScaled", src, dst))
- {
- return;
- }
-
- llassert_always( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
- llassert_always( src->getComponents() == dst->getComponents() );
-
- if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
- {
- memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
- return;
- }
-
- bilinear_scale(
- src->getData(), src->getWidth(), src->getHeight(), src->getComponents(), src->getWidth()*src->getComponents()
- , dst->getData(), dst->getWidth(), dst->getHeight(), dst->getComponents(), dst->getWidth()*dst->getComponents()
- );
-
- /*
- S32 temp_data_size = src->getWidth() * dst->getHeight() * getComponents();
- llassert_always(temp_data_size > 0);
- std::vector<U8> temp_buffer(temp_data_size);
-
- // Vertical
- for( S32 col = 0; col < src->getWidth(); col++ )
- {
- copyLineScaled( src->getData() + (getComponents() * col), &temp_buffer[0] + (getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
- }
-
- // Horizontal
- for( S32 row = 0; row < dst->getHeight(); row++ )
- {
- copyLineScaled( &temp_buffer[0] + (getComponents() * src->getWidth() * row), dst->getData() + (getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth(), 1, 1 );
- }
- */
-}
-
-
-bool LLImageRaw::scale( S32 new_width, S32 new_height, bool scale_image_data )
-{
- LLImageDataLock lock(this);
-
- S32 components = getComponents();
- if (components != 1 && components != 3 && components != 4)
- {
- LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL;
- return false;
- }
-
- if (isBufferInvalid())
- {
- LL_WARNS() << "Invalid image buffer" << LL_ENDL;
- return false;
- }
-
- S32 old_width = getWidth();
- S32 old_height = getHeight();
-
- if( (old_width == new_width) && (old_height == new_height) )
- {
- return true; // Nothing to do.
- }
-
- // Reallocate the data buffer.
-
- if (scale_image_data)
- {
- S32 new_data_size = new_width * new_height * components;
-
- if (new_data_size > 0)
- {
- U8 *new_data = (U8*)ll_aligned_malloc_16(new_data_size);
- if(NULL == new_data)
- {
- return false;
- }
-
- bilinear_scale(getData(), old_width, old_height, components, old_width*components, new_data, new_width, new_height, components, new_width*components);
- setDataAndSize(new_data, new_width, new_height, components);
- }
- }
- else try
- {
- // copy out existing image data
- S32 temp_data_size = old_width * old_height * components;
- std::vector<U8> temp_buffer(temp_data_size);
- memcpy(&temp_buffer[0], getData(), temp_data_size);
-
- // allocate new image data, will delete old data
- U8* new_buffer = allocateDataSize(new_width, new_height, components);
-
- if (!new_buffer)
- {
- LL_WARNS() << "Failed to allocate new image data buffer" << LL_ENDL;
- return false;
- }
-
- for( S32 row = 0; row < new_height; row++ )
- {
- if (row < old_height)
- {
- memcpy(new_buffer + (new_width * row * components), &temp_buffer[0] + (old_width * row * components), components * llmin(old_width, new_width));
- if (old_width < new_width)
- {
- // pad out rest of row with black
- memset(new_buffer + (components * ((new_width * row) + old_width)), 0, components * (new_width - old_width));
- }
- }
- else
- {
- // pad remaining rows with black
- memset(new_buffer + (new_width * row * components), 0, new_width * components);
- }
- }
- }
- catch (std::bad_alloc&) // for temp_buffer
- {
- LL_WARNS() << "Failed to allocate temporary image buffer" << LL_ENDL;
- return false;
- }
-
- return true ;
-}
-
-LLPointer<LLImageRaw> LLImageRaw::scaled(S32 new_width, S32 new_height)
-{
- LLPointer<LLImageRaw> result;
-
- LLImageDataLock lock(this);
-
- S32 components = getComponents();
- if (components != 1 && components != 3 && components != 4)
- {
- LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL;
- return result;
- }
-
- if (isBufferInvalid())
- {
- LL_WARNS() << "Invalid image buffer" << LL_ENDL;
- return result;
- }
-
- S32 old_width = getWidth();
- S32 old_height = getHeight();
-
- if ((old_width == new_width) && (old_height == new_height))
- {
- result = new LLImageRaw(old_width, old_height, components);
- if (!result || result->isBufferInvalid())
- {
- LL_WARNS() << "Failed to allocate new image" << LL_ENDL;
- return result;
- }
- memcpy(result->getData(), getData(), getDataSize());
- }
- else
- {
- S32 new_data_size = new_width * new_height * components;
-
- if (new_data_size > 0)
- {
- result = new LLImageRaw(new_width, new_height, components);
- if (!result || result->isBufferInvalid())
- {
- LL_WARNS() << "Failed to allocate new image" << LL_ENDL;
- return result;
- }
- bilinear_scale(getData(), old_width, old_height, components, old_width*components, result->getData(), new_width, new_height, components, new_width*components);
- }
- }
-
- return result;
-}
-
-void LLImageRaw::copyLineScaled( const U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len, S32 in_pixel_step, S32 out_pixel_step )
-{
- const S32 components = getComponents();
- llassert( components >= 1 && components <= 4 );
-
- const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
- const F32 norm_factor = 1.f / ratio;
-
- S32 goff = components >= 2 ? 1 : 0;
- S32 boff = components >= 3 ? 2 : 0;
- for( S32 x = 0; x < out_pixel_len; x++ )
- {
- // Sample input pixels in range from sample0 to sample1.
- // Avoid floating point accumulation error... don't just add ratio each time. JC
- const F32 sample0 = x * ratio;
- const F32 sample1 = (x+1) * ratio;
- const S32 index0 = llfloor(sample0); // left integer (floor)
- const S32 index1 = llfloor(sample1); // right integer (floor)
- const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
- const F32 fract1 = sample1 - F32(index1); // spill-over on right
-
- if( index0 == index1 )
- {
- // Interval is embedded in one input pixel
- S32 t0 = x * out_pixel_step * components;
- S32 t1 = index0 * in_pixel_step * components;
- U8* outp = out + t0;
- const U8* inp = in + t1;
- for (S32 i = 0; i < components; ++i)
- {
- *outp = *inp;
- ++outp;
- ++inp;
- }
- }
- else
- {
- // Left straddle
- S32 t1 = index0 * in_pixel_step * components;
- F32 r = in[t1 + 0] * fract0;
- F32 g = in[t1 + goff] * fract0;
- F32 b = in[t1 + boff] * fract0;
- F32 a = 0;
- if( components == 4)
- {
- a = in[t1 + 3] * fract0;
- }
-
- // Central interval
- if (components < 4)
- {
- for( S32 u = index0 + 1; u < index1; u++ )
- {
- S32 t2 = u * in_pixel_step * components;
- r += in[t2 + 0];
- g += in[t2 + goff];
- b += in[t2 + boff];
- }
- }
- else
- {
- for( S32 u = index0 + 1; u < index1; u++ )
- {
- S32 t2 = u * in_pixel_step * components;
- r += in[t2 + 0];
- g += in[t2 + 1];
- b += in[t2 + 2];
- a += in[t2 + 3];
- }
- }
-
- // right straddle
- // Watch out for reading off of end of input array.
- if( fract1 && index1 < in_pixel_len )
- {
- S32 t3 = index1 * in_pixel_step * components;
- if (components < 4)
- {
- U8 in0 = in[t3 + 0];
- U8 in1 = in[t3 + goff];
- U8 in2 = in[t3 + boff];
- r += in0 * fract1;
- g += in1 * fract1;
- b += in2 * fract1;
- }
- else
- {
- U8 in0 = in[t3 + 0];
- U8 in1 = in[t3 + 1];
- U8 in2 = in[t3 + 2];
- U8 in3 = in[t3 + 3];
- r += in0 * fract1;
- g += in1 * fract1;
- b += in2 * fract1;
- a += in3 * fract1;
- }
- }
-
- r *= norm_factor;
- g *= norm_factor;
- b *= norm_factor;
- a *= norm_factor; // skip conditional
-
- S32 t4 = x * out_pixel_step * components;
- out[t4 + 0] = U8(ll_round(r));
- if (components >= 2)
- out[t4 + 1] = U8(ll_round(g));
- if (components >= 3)
- out[t4 + 2] = U8(ll_round(b));
- if( components == 4)
- out[t4 + 3] = U8(ll_round(a));
- }
- }
-}
-
-void LLImageRaw::compositeRowScaled4onto3( const U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len )
-{
- llassert( getComponents() == 3 );
-
- const S32 IN_COMPONENTS = 4;
- const S32 OUT_COMPONENTS = 3;
-
- const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
- const F32 norm_factor = 1.f / ratio;
-
- for( S32 x = 0; x < out_pixel_len; x++ )
- {
- // Sample input pixels in range from sample0 to sample1.
- // Avoid floating point accumulation error... don't just add ratio each time. JC
- const F32 sample0 = x * ratio;
- const F32 sample1 = (x+1) * ratio;
- const S32 index0 = S32(sample0); // left integer (floor)
- const S32 index1 = S32(sample1); // right integer (floor)
- const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
- const F32 fract1 = sample1 - F32(index1); // spill-over on right
-
- U8 in_scaled_r;
- U8 in_scaled_g;
- U8 in_scaled_b;
- U8 in_scaled_a;
-
- if( index0 == index1 )
- {
- // Interval is embedded in one input pixel
- S32 t1 = index0 * IN_COMPONENTS;
- in_scaled_r = in[t1 + 0];
- in_scaled_g = in[t1 + 0];
- in_scaled_b = in[t1 + 0];
- in_scaled_a = in[t1 + 0];
- }
- else
- {
- // Left straddle
- S32 t1 = index0 * IN_COMPONENTS;
- F32 r = in[t1 + 0] * fract0;
- F32 g = in[t1 + 1] * fract0;
- F32 b = in[t1 + 2] * fract0;
- F32 a = in[t1 + 3] * fract0;
-
- // Central interval
- for( S32 u = index0 + 1; u < index1; u++ )
- {
- S32 t2 = u * IN_COMPONENTS;
- r += in[t2 + 0];
- g += in[t2 + 1];
- b += in[t2 + 2];
- a += in[t2 + 3];
- }
-
- // right straddle
- // Watch out for reading off of end of input array.
- if( fract1 && index1 < in_pixel_len )
- {
- S32 t3 = index1 * IN_COMPONENTS;
- r += in[t3 + 0] * fract1;
- g += in[t3 + 1] * fract1;
- b += in[t3 + 2] * fract1;
- a += in[t3 + 3] * fract1;
- }
-
- r *= norm_factor;
- g *= norm_factor;
- b *= norm_factor;
- a *= norm_factor;
-
- in_scaled_r = U8(ll_round(r));
- in_scaled_g = U8(ll_round(g));
- in_scaled_b = U8(ll_round(b));
- in_scaled_a = U8(ll_round(a));
- }
-
- if( in_scaled_a )
- {
- if( 255 == in_scaled_a )
- {
- out[0] = in_scaled_r;
- out[1] = in_scaled_g;
- out[2] = in_scaled_b;
- }
- else
- {
- U8 transparency = 255 - in_scaled_a;
- out[0] = fastFractionalMult( out[0], transparency ) + fastFractionalMult( in_scaled_r, in_scaled_a );
- out[1] = fastFractionalMult( out[1], transparency ) + fastFractionalMult( in_scaled_g, in_scaled_a );
- out[2] = fastFractionalMult( out[2], transparency ) + fastFractionalMult( in_scaled_b, in_scaled_a );
- }
- }
- out += OUT_COMPONENTS;
- }
-}
-
-// static
-bool LLImageRaw::validateSrcAndDst(std::string func, const LLImageRaw* src, const LLImageRaw* dst)
-{
- LLImageDataSharedLock lockIn(src);
- LLImageDataLock lockOut(dst);
-
- if (!src || !dst || src->isBufferInvalid() || dst->isBufferInvalid())
- {
- LL_WARNS() << func << ": Source: ";
- if (!src) LL_CONT << "Null pointer";
- else if (src->isBufferInvalid()) LL_CONT << "Invalid buffer";
- else LL_CONT << "OK";
-
- LL_CONT << "; Destination: ";
- if (!dst) LL_CONT << "Null pointer";
- else if (dst->isBufferInvalid()) LL_CONT << "Invalid buffer";
- else LL_CONT << "OK";
- LL_CONT << "." << LL_ENDL;
-
- return false;
- }
- return true;
-}
-
-//----------------------------------------------------------------------------
-
-static struct
-{
- const char* exten;
- EImageCodec codec;
-}
-file_extensions[] =
-{
- { "bmp", IMG_CODEC_BMP },
- { "tga", IMG_CODEC_TGA },
- { "j2c", IMG_CODEC_J2C },
- { "jp2", IMG_CODEC_J2C },
- { "texture", IMG_CODEC_J2C },
- { "jpg", IMG_CODEC_JPEG },
- { "jpeg", IMG_CODEC_JPEG },
- { "mip", IMG_CODEC_DXT },
- { "dxt", IMG_CODEC_DXT },
- { "png", IMG_CODEC_PNG }
-};
-#define NUM_FILE_EXTENSIONS LL_ARRAY_SIZE(file_extensions)
-#if 0
-static std::string find_file(std::string &name, S8 *codec)
-{
- std::string tname;
- for (int i=0; i<(int)(NUM_FILE_EXTENSIONS); i++)
- {
- tname = name + "." + std::string(file_extensions[i].exten);
- llifstream ifs(tname.c_str(), llifstream::binary);
- if (ifs.is_open())
- {
- ifs.close();
- if (codec)
- *codec = file_extensions[i].codec;
- return std::string(file_extensions[i].exten);
- }
- }
- return std::string("");
-}
-#endif
-EImageCodec LLImageBase::getCodecFromExtension(const std::string& exten)
-{
- if (!exten.empty())
- {
- for (int i = 0; i < (int)(NUM_FILE_EXTENSIONS); i++)
- {
- if (exten == file_extensions[i].exten)
- return file_extensions[i].codec;
- }
- }
- return IMG_CODEC_INVALID;
-}
-#if 0
-bool LLImageRaw::createFromFile(const std::string &filename, bool j2c_lowest_mip_only)
-{
- std::string name = filename;
- size_t dotidx = name.rfind('.');
- S8 codec = IMG_CODEC_INVALID;
- std::string exten;
-
- deleteData(); // delete any existing data
-
- if (dotidx != std::string::npos)
- {
- exten = name.substr(dotidx+1);
- LLStringUtil::toLower(exten);
- codec = getCodecFromExtension(exten);
- }
- else
- {
- exten = find_file(name, &codec);
- name = name + "." + exten;
- }
- if (codec == IMG_CODEC_INVALID)
- {
- return false; // format not recognized
- }
-
- llifstream ifs(name.c_str(), llifstream::binary);
- if (!ifs.is_open())
- {
- // SJB: changed from LL_INFOS() to LL_DEBUGS() to reduce spam
- LL_DEBUGS() << "Unable to open image file: " << name << LL_ENDL;
- return false;
- }
-
- ifs.seekg (0, std::ios::end);
- int length = ifs.tellg();
- if (j2c_lowest_mip_only && length > 2048)
- {
- length = 2048;
- }
- ifs.seekg (0, std::ios::beg);
-
- if (!length)
- {
- LL_INFOS() << "Zero length file file: " << name << LL_ENDL;
- return false;
- }
-
- LLPointer<LLImageFormatted> image = LLImageFormatted::createFromType(codec);
- llassert(image.notNull());
-
- U8 *buffer = image->allocateData(length);
- ifs.read ((char*)buffer, length);
- ifs.close();
-
- bool success;
-
- success = image->updateData();
- if (success)
- {
- if (j2c_lowest_mip_only && codec == IMG_CODEC_J2C)
- {
- S32 width = image->getWidth();
- S32 height = image->getHeight();
- S32 discard_level = 0;
- while (width > 1 && height > 1 && discard_level < MAX_DISCARD_LEVEL)
- {
- width >>= 1;
- height >>= 1;
- discard_level++;
- }
- ((LLImageJ2C *)((LLImageFormatted*)image))->setDiscardLevel(discard_level);
- }
- success = image->decode(this, 100000.0f);
- }
-
- image = NULL; // deletes image
- if (!success)
- {
- deleteData();
- LL_WARNS() << "Unable to decode image" << name << LL_ENDL;
- return false;
- }
-
- return true;
-}
-#endif
-//---------------------------------------------------------------------------
-// LLImageFormatted
-//---------------------------------------------------------------------------
-
-//static
-S32 LLImageFormatted::sGlobalFormattedMemory = 0;
-
-LLImageFormatted::LLImageFormatted(S8 codec)
- : LLImageBase(),
- mCodec(codec),
- mDecoding(0),
- mDecoded(0),
- mDiscardLevel(-1),
- mLevels(0)
-{
-}
-
-// virtual
-LLImageFormatted::~LLImageFormatted()
-{
- // NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
- // NOT LLImageFormatted::deleteData()
- deleteData();
-}
-
-//----------------------------------------------------------------------------
-
-//virtual
-void LLImageFormatted::resetLastError()
-{
- LLImage::setLastError("");
-}
-
-//virtual
-void LLImageFormatted::setLastError(const std::string& message, const std::string& filename)
-{
- std::string error = message;
- if (!filename.empty())
- error += std::string(" FILE: ") + filename;
- LLImage::setLastError(error);
-}
-
-//----------------------------------------------------------------------------
-
-// static
-LLImageFormatted* LLImageFormatted::createFromType(S8 codec)
-{
- LLImageFormatted* image;
- switch(codec)
- {
- case IMG_CODEC_BMP:
- image = new LLImageBMP();
- break;
- case IMG_CODEC_TGA:
- image = new LLImageTGA();
- break;
- case IMG_CODEC_JPEG:
- image = new LLImageJPEG();
- break;
- case IMG_CODEC_PNG:
- image = new LLImagePNG();
- break;
- case IMG_CODEC_J2C:
- image = new LLImageJ2C();
- break;
- case IMG_CODEC_DXT:
- image = new LLImageDXT();
- break;
- default:
- image = NULL;
- break;
- }
- return image;
-}
-
-// static
-LLImageFormatted* LLImageFormatted::createFromExtension(const std::string& instring)
-{
- std::string exten;
- size_t dotidx = instring.rfind('.');
- if (dotidx != std::string::npos)
- {
- exten = instring.substr(dotidx+1);
- }
- else
- {
- exten = instring;
- }
- S8 codec = getCodecFromExtension(exten);
- return createFromType(codec);
-}
-//----------------------------------------------------------------------------
-
-// virtual
-void LLImageFormatted::dump()
-{
- LLImageBase::dump();
-
- LL_INFOS() << "LLImageFormatted"
- << " mDecoding " << mDecoding
- << " mCodec " << S32(mCodec)
- << " mDecoded " << mDecoded
- << LL_ENDL;
-}
-
-//----------------------------------------------------------------------------
-
-S32 LLImageFormatted::calcDataSize(S32 discard_level)
-{
- if (discard_level < 0)
- {
- discard_level = mDiscardLevel;
- }
- S32 w = getWidth() >> discard_level;
- S32 h = getHeight() >> discard_level;
- w = llmax(w, 1);
- h = llmax(h, 1);
- return w * h * getComponents();
-}
-
-S32 LLImageFormatted::calcDiscardLevelBytes(S32 bytes)
-{
- llassert(bytes >= 0);
- S32 discard_level = 0;
- while (1)
- {
- S32 bytes_needed = calcDataSize(discard_level); // virtual
- if (bytes_needed <= bytes)
- {
- break;
- }
- discard_level++;
- if (discard_level > MAX_IMAGE_MIP)
- {
- return -1;
- }
- }
- return discard_level;
-}
-
-
-//----------------------------------------------------------------------------
-
-// Subclasses that can handle more than 4 channels should override this function.
-bool LLImageFormatted::decodeChannels(LLImageRaw* raw_image,F32 decode_time, S32 first_channel, S32 max_channel)
-{
- llassert( (first_channel == 0) && (max_channel == 4) );
- return decode( raw_image, decode_time ); // Loads first 4 channels by default.
-}
-
-//----------------------------------------------------------------------------
-
-// virtual
-U8* LLImageFormatted::allocateData(S32 size)
-{
- LLImageDataLock lock(this);
-
- U8* res = LLImageBase::allocateData(size); // calls deleteData()
- sGlobalFormattedMemory += getDataSize();
- return res;
-}
-
-// virtual
-U8* LLImageFormatted::reallocateData(S32 size)
-{
- LLImageDataLock lock(this);
-
- sGlobalFormattedMemory -= getDataSize();
- U8* res = LLImageBase::reallocateData(size);
- sGlobalFormattedMemory += getDataSize();
- return res;
-}
-
-// virtual
-void LLImageFormatted::deleteData()
-{
- LLImageDataLock lock(this);
-
- if (mDecoding)
- {
- LL_ERRS() << "LLImageFormatted::deleteData() is called during decoding" << LL_ENDL;
- }
- sGlobalFormattedMemory -= getDataSize();
- LLImageBase::deleteData();
-}
-
-//----------------------------------------------------------------------------
-
-// virtual
-void LLImageFormatted::sanityCheck()
-{
- LLImageBase::sanityCheck();
-
- if (mCodec >= IMG_CODEC_EOF)
- {
- LL_ERRS() << "Failed LLImageFormatted::sanityCheck "
- << "decoding " << S32(mDecoding)
- << "decoded " << S32(mDecoded)
- << "codec " << S32(mCodec)
- << LL_ENDL;
- }
-}
-
-//----------------------------------------------------------------------------
-
-bool LLImageFormatted::copyData(U8 *data, S32 size)
-{
- LLImageDataLock lock(this);
-
- if ( data && ((data != getData()) || (size != getDataSize())) )
- {
- deleteData();
- allocateData(size);
- memcpy(getData(), data, size); /* Flawfinder: ignore */
- }
- return true;
-}
-
-// LLImageFormatted becomes the owner of data
-void LLImageFormatted::setData(U8 *data, S32 size)
-{
- LLImageDataLock lock(this);
-
- if (data && data != getData())
- {
- deleteData();
- setDataAndSize(data, size); // Access private LLImageBase members
-
- sGlobalFormattedMemory += getDataSize();
- }
-}
-
-void LLImageFormatted::appendData(U8 *data, S32 size)
-{
- if (data)
- {
- LLImageDataLock lock(this);
-
- if (!getData())
- {
- setData(data, size);
- }
- else
- {
- S32 cursize = getDataSize();
- S32 newsize = cursize + size;
- reallocateData(newsize);
- memcpy(getData() + cursize, data, size);
- ll_aligned_free_16(data);
- }
- }
-}
-
-//----------------------------------------------------------------------------
-
-bool LLImageFormatted::load(const std::string &filename, int load_size)
-{
- resetLastError();
-
- S32 file_size = 0;
- LLAPRFile infile ;
- infile.open(filename, LL_APR_RB, NULL, &file_size);
- apr_file_t* apr_file = infile.getFileHandle();
- if (!apr_file)
- {
- setLastError("Unable to open file for reading", filename);
- return false;
- }
- if (file_size == 0)
- {
- setLastError("File is empty",filename);
- return false;
- }
-
- // Constrain the load size to acceptable values
- if ((load_size == 0) || (load_size > file_size))
- {
- load_size = file_size;
- }
-
- LLImageDataLock lock(this);
-
- bool res;
- U8 *data = allocateData(load_size);
- if (data)
- {
- apr_size_t bytes_read = load_size;
- apr_status_t s = apr_file_read(apr_file, data, &bytes_read); // modifies bytes_read
- if (s != APR_SUCCESS || (S32) bytes_read != load_size)
- {
- deleteData();
- setLastError("Unable to read file",filename);
- res = false;
- }
- else
- {
- res = updateData();
- }
- }
- else
- {
- setLastError("Allocation failure", filename);
- res = false;
- }
-
- return res;
-}
-
-bool LLImageFormatted::save(const std::string &filename)
-{
- resetLastError();
-
- LLAPRFile outfile ;
- outfile.open(filename, LL_APR_WB);
- if (!outfile.getFileHandle())
- {
- setLastError("Unable to open file for writing", filename);
- return false;
- }
-
- LLImageDataSharedLock lock(this);
-
- S32 result = outfile.write(getData(), getDataSize());
- outfile.close() ;
- return (result != 0);
-}
-
-S8 LLImageFormatted::getCodec() const
-{
- return mCodec;
-}
-
-static void avg4_colors4(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
-{
- dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
- dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
- dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
- dst[3] = (U8)(((U32)(a[3]) + b[3] + c[3] + d[3])>>2);
-}
-
-static void avg4_colors3(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
-{
- dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
- dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
- dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
-}
-
-static void avg4_colors2(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
-{
- dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
- dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
-}
-
-void LLImageBase::setDataAndSize(U8 *data, S32 size)
-{
- ll_assert_aligned(data, 16);
- mData = data;
- mDataSize = size;
-}
-
-//static
-void LLImageBase::generateMip(const U8* indata, U8* mipdata, S32 width, S32 height, S32 nchannels)
-{
- llassert(width > 0 && height > 0);
- U8* data = mipdata;
- S32 in_width = width*2;
- for (S32 h=0; h<height; h++)
- {
- for (S32 w=0; w<width; w++)
- {
- switch(nchannels)
- {
- case 4:
- avg4_colors4(indata, indata+4, indata+4*in_width, indata+4*in_width+4, data);
- break;
- case 3:
- avg4_colors3(indata, indata+3, indata+3*in_width, indata+3*in_width+3, data);
- break;
- case 2:
- avg4_colors2(indata, indata+2, indata+2*in_width, indata+2*in_width+2, data);
- break;
- case 1:
- *(U8*)data = (U8)(((U32)(indata[0]) + indata[1] + indata[in_width] + indata[in_width+1])>>2);
- break;
- default:
- LL_ERRS() << "generateMmip called with bad num channels" << LL_ENDL;
- }
- indata += nchannels*2;
- data += nchannels;
- }
- indata += nchannels*in_width; // skip odd lines
- }
-}
-
-
-//============================================================================
-
-//static
-F32 LLImageBase::calc_download_priority(F32 virtual_size, F32 visible_pixels, S32 bytes_sent)
-{
- F32 w_priority;
-
- F32 bytes_weight = 1.f;
- if (!bytes_sent)
- {
- bytes_weight = 20.f;
- }
- else if (bytes_sent < 1000)
- {
- bytes_weight = 1.f;
- }
- else if (bytes_sent < 2000)
- {
- bytes_weight = 1.f/1.5f;
- }
- else if (bytes_sent < 4000)
- {
- bytes_weight = 1.f/3.f;
- }
- else if (bytes_sent < 8000)
- {
- bytes_weight = 1.f/6.f;
- }
- else if (bytes_sent < 16000)
- {
- bytes_weight = 1.f/12.f;
- }
- else if (bytes_sent < 32000)
- {
- bytes_weight = 1.f/20.f;
- }
- else if (bytes_sent < 64000)
- {
- bytes_weight = 1.f/32.f;
- }
- else
- {
- bytes_weight = 1.f/64.f;
- }
- bytes_weight *= bytes_weight;
-
-
- //LL_INFOS() << "VS: " << virtual_size << LL_ENDL;
- F32 virtual_size_factor = virtual_size / (10.f*10.f);
-
- // The goal is for weighted priority to be <= 0 when we've reached a point where
- // we've sent enough data.
- //LL_INFOS() << "BytesSent: " << bytes_sent << LL_ENDL;
- //LL_INFOS() << "BytesWeight: " << bytes_weight << LL_ENDL;
- //LL_INFOS() << "PreLog: " << bytes_weight * virtual_size_factor << LL_ENDL;
- w_priority = (F32)log10(bytes_weight * virtual_size_factor);
-
- //LL_INFOS() << "PreScale: " << w_priority << LL_ENDL;
-
- // We don't want to affect how MANY bytes we send based on the visible pixels, but the order
- // in which they're sent. We post-multiply so we don't change the zero point.
- if (w_priority > 0.f)
- {
- F32 pixel_weight = (F32)log10(visible_pixels + 1)*3.0f;
- w_priority *= pixel_weight;
- }
-
- return w_priority;
-}
-
-//============================================================================
+/** + * @file llimage.cpp + * @brief Base class for images. + * + * $LicenseInfo:firstyear=2001&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#include "linden_common.h" + +#include "llimageworker.h" +#include "llimage.h" + +#include "llmath.h" +#include "v4coloru.h" + +#include "llimagebmp.h" +#include "llimagetga.h" +#include "llimagej2c.h" +#include "llimagejpeg.h" +#include "llimagepng.h" +#include "llimagedxt.h" +#include "llmemory.h" + +#include <boost/preprocessor.hpp> + +//.................................................................................. +//.................................................................................. +// Helper macrose's for generate cycle unwrap templates +//.................................................................................. +#define _UNROL_GEN_TPL_arg_0(arg) +#define _UNROL_GEN_TPL_arg_1(arg) arg + +#define _UNROL_GEN_TPL_comma_0 +#define _UNROL_GEN_TPL_comma_1 BOOST_PP_COMMA() +//.................................................................................. +#define _UNROL_GEN_TPL_ARGS_macro(z,n,seq) \ + BOOST_PP_CAT(_UNROL_GEN_TPL_arg_, BOOST_PP_MOD(n, 2))(BOOST_PP_SEQ_ELEM(n, seq)) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq)))) + +#define _UNROL_GEN_TPL_ARGS(seq) \ + BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_ARGS_macro, seq) +//.................................................................................. + +#define _UNROL_GEN_TPL_TYPE_ARGS_macro(z,n,seq) \ + BOOST_PP_SEQ_ELEM(n, seq) BOOST_PP_CAT(_UNROL_GEN_TPL_comma_, BOOST_PP_AND(BOOST_PP_MOD(n, 2), BOOST_PP_NOT_EQUAL(BOOST_PP_INC(n), BOOST_PP_SEQ_SIZE(seq)))) + +#define _UNROL_GEN_TPL_TYPE_ARGS(seq) \ + BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), _UNROL_GEN_TPL_TYPE_ARGS_macro, seq) +//.................................................................................. +#define _UNROLL_GEN_TPL_foreach_ee(z, n, seq) \ + executor<n>(_UNROL_GEN_TPL_ARGS(seq)); + +#define _UNROLL_GEN_TPL(name, args_seq, operation, spec) \ + template<> struct name<spec> { \ + private: \ + template<S32 _idx> inline void executor(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \ + BOOST_PP_SEQ_ENUM(operation) ; \ + } \ + public: \ + inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { \ + BOOST_PP_REPEAT(spec, _UNROLL_GEN_TPL_foreach_ee, args_seq) \ + } \ +}; +//.................................................................................. +#define _UNROLL_GEN_TPL_foreach_seq_macro(r, data, elem) \ + _UNROLL_GEN_TPL(BOOST_PP_SEQ_ELEM(0, data), BOOST_PP_SEQ_ELEM(1, data), BOOST_PP_SEQ_ELEM(2, data), elem) + +#define UNROLL_GEN_TPL(name, args_seq, operation, spec_seq) \ + /*general specialization - should not be implemented!*/ \ + template<U8> struct name { inline void operator()(_UNROL_GEN_TPL_TYPE_ARGS(args_seq)) { /*static_assert(!"Should not be instantiated.");*/ } }; \ + BOOST_PP_SEQ_FOR_EACH(_UNROLL_GEN_TPL_foreach_seq_macro, (name)(args_seq)(operation), spec_seq) +//.................................................................................. +//.................................................................................. + + +//.................................................................................. +// Generated unrolling loop templates with specializations +//.................................................................................. +//example: for(c = 0; c < ch; ++c) comp[c] = cx[0] = 0; +UNROLL_GEN_TPL(uroll_zeroze_cx_comp, (S32 *)(cx)(S32 *)(comp), (cx[_idx] = comp[_idx] = 0), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] >>= 4; +UNROLL_GEN_TPL(uroll_comp_rshftasgn_constval, (S32 *)(comp)(const S32)(cval), (comp[_idx] >>= cval), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap; +UNROLL_GEN_TPL(uroll_comp_asgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] = (cx[_idx] >> cval) * val), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy; +UNROLL_GEN_TPL(uroll_comp_plusasgn_cx_rshft_cval_all_mul_val, (S32 *)(comp)(S32 *)(cx)(const S32)(cval)(S32)(val), (comp[_idx] += (cx[_idx] >> cval) * val), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x]; +UNROLL_GEN_TPL(uroll_inp_plusasgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] += pix[_idx] * val), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x]; +UNROLL_GEN_TPL(uroll_inp_asgn_pix_mul_val, (S32 *)(comp)(const U8 *)(pix)(S32)(val), (comp[_idx] = pix[_idx] * val), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16; +UNROLL_GEN_TPL(uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r, (S32 *)(comp)(S32 *)(cx)(S32)(apoint), (comp[_idx] = ((cx[_idx] * apoint) + (comp[_idx] * (256 - apoint))) >> 16), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8; +UNROLL_GEN_TPL(uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r, (S32 *)(comp)(const U8 *)(pix)(S32)(apoint), (comp[_idx] = (comp[_idx] + pix[_idx] * apoint) >> 8), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12; +UNROLL_GEN_TPL(uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r, (S32 *)(comp)(S32)(apoint)(S32 *)(cx), (comp[_idx] = ((comp[_idx] * (256-apoint)) + (cx[_idx] * apoint)) >> 12), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) *dptr++ = comp[c]&0xff; +UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_and_ff, (U8 *&)(dptr)(S32 *)(comp), (*dptr++ = comp[_idx]&0xff), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff; +UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff, (U8 *&)(dptr)(const U8 *)(sptr)(S32)(apoint), (*dptr++ = sptr[apoint + _idx]&0xff), (1)(3)(4)); +//example: for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff; +UNROLL_GEN_TPL(uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff, (U8 *&)(dptr)(S32 *)(comp)(const S32)(cval), (*dptr++ = (comp[_idx]>>cval)&0xff), (1)(3)(4)); +//.................................................................................. + + +template<U8 ch> +struct scale_info +{ +public: + std::vector<S32> xpoints; + std::vector<const U8*> ystrides; + std::vector<S32> xapoints, yapoints; + S32 xup_yup; + +public: + //unrolling loop types declaration + typedef uroll_zeroze_cx_comp<ch> uroll_zeroze_cx_comp_t; + typedef uroll_comp_rshftasgn_constval<ch> uroll_comp_rshftasgn_constval_t; + typedef uroll_comp_asgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_asgn_cx_rshft_cval_all_mul_val_t; + typedef uroll_comp_plusasgn_cx_rshft_cval_all_mul_val<ch> uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t; + typedef uroll_inp_plusasgn_pix_mul_val<ch> uroll_inp_plusasgn_pix_mul_val_t; + typedef uroll_inp_asgn_pix_mul_val<ch> uroll_inp_asgn_pix_mul_val_t; + typedef uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r<ch> uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t; + typedef uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r<ch> uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t; + typedef uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r<ch> uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t; + typedef uroll_uref_dptr_inc_asgn_comp_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_and_ff_t; + typedef uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff<ch> uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t; + typedef uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff<ch> uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t; + +public: + scale_info(const U8 *src, U32 srcW, U32 srcH, U32 dstW, U32 dstH, U32 srcStride) + : xup_yup((dstW >= srcW) + ((dstH >= srcH) << 1)) + { + calc_x_points(srcW, dstW); + calc_y_strides(src, srcStride, srcH, dstH); + calc_aa_points(srcW, dstW, xup_yup&1, xapoints); + calc_aa_points(srcH, dstH, xup_yup&2, yapoints); + } + +private: + //........................................................................................... + void calc_x_points(U32 srcW, U32 dstW) + { + xpoints.resize(dstW+1); + + S32 val = dstW >= srcW ? 0x8000 * srcW / dstW - 0x8000 : 0; + S32 inc = (srcW << 16) / dstW; + + for(U32 i = 0, j = 0; i < dstW; ++i, ++j, val += inc) + { + xpoints[j] = llmax(0, val >> 16); + } + } + //........................................................................................... + void calc_y_strides(const U8 *src, U32 srcStride, U32 srcH, U32 dstH) + { + ystrides.resize(dstH+1); + + S32 val = dstH >= srcH ? 0x8000 * srcH / dstH - 0x8000 : 0; + S32 inc = (srcH << 16) / dstH; + + for(U32 i = 0, j = 0; i < dstH; ++i, ++j, val += inc) + { + ystrides[j] = src + llmax(0, val >> 16) * srcStride; + } + } + //........................................................................................... + void calc_aa_points(U32 srcSz, U32 dstSz, bool scale_up, std::vector<S32> &vp) + { + vp.resize(dstSz); + + if(scale_up) + { + S32 val = 0x8000 * srcSz / dstSz - 0x8000; + S32 inc = (srcSz << 16) / dstSz; + U32 pos; + + for(U32 i = 0, j = 0; i < dstSz; ++i, ++j, val += inc) + { + pos = val >> 16; + + if (pos >= (srcSz - 1)) + vp[j] = 0; + else + vp[j] = (val >> 8) - ((val >> 8) & 0xffffff00); + } + } + else + { + S32 inc = (srcSz << 16) / dstSz; + S32 Cp = ((dstSz << 14) / srcSz) + 1; + S32 ap; + + for(U32 i = 0, j = 0, val = 0; i < dstSz; ++i, ++j, val += inc) + { + ap = ((0x100 - ((val >> 8) & 0xff)) * Cp) >> 8; + vp[j] = ap | (Cp << 16); + } + } + } +}; + + +template<U8 ch> +inline void bilinear_scale( + const U8 *src, U32 srcW, U32 srcH, U32 srcStride + , U8 *dst, U32 dstW, U32 dstH, U32 dstStride + ) +{ + typedef scale_info<ch> scale_info_t; + + scale_info_t info(src, srcW, srcH, dstW, dstH, srcStride); + + const U8 *sptr; + U8 *dptr; + U32 x, y; + const U8 *pix; + + S32 cx[ch], comp[ch]; + + + if(3 == info.xup_yup) + { //scale x/y - up + for(y = 0; y < dstH; ++y) + { + dptr = dst + (y * dstStride); + sptr = info.ystrides[y]; + + if(0 < info.yapoints[y]) + { + for(x = 0; x < dstW; ++x) + { + //for(c = 0; c < ch; ++c) cx[c] = comp[c] = 0; + typename scale_info_t::uroll_zeroze_cx_comp_t()(cx, comp); + + if(0 < info.xapoints[x]) + { + pix = info.ystrides[y] + info.xpoints[x] * ch; + + //for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.xapoints[x]); + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]); + + pix += ch; + + //for(c = 0; c < ch; ++c) comp[c] += pix[c] * info.xapoints[x]; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, info.xapoints[x]); + + pix += srcStride; + + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * info.xapoints[x]; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, info.xapoints[x]); + + pix -= ch; + + //for(c = 0; c < ch; ++c) { + // cx[c] += pix[c] * (256 - info.xapoints[x]); + // comp[c] = ((cx[c] * info.yapoints[y]) + (comp[c] * (256 - info.yapoints[y]))) >> 16; + // *dptr++ = comp[c]&0xff; + //} + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, 256 - info.xapoints[x]); + typename scale_info_t::uroll_comp_asgn_cx_mul_apoint_plus_comp_mul_inv_apoint_allshifted_16_r_t()(comp, cx, info.yapoints[y]); + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp); + } + else + { + pix = info.ystrides[y] + info.xpoints[x] * ch; + + //for(c = 0; c < ch; ++c) comp[c] = pix[c] * (256 - info.yapoints[y]); + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256-info.yapoints[y]); + + pix += srcStride; + + //for(c = 0; c < ch; ++c) { + // comp[c] = (comp[c] + pix[c] * info.yapoints[y]) >> 8; + // *dptr++ = comp[c]&0xff; + //} + typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.yapoints[y]); + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp); + } + } + } + else + { + for(x = 0; x < dstW; ++x) + { + if(0 < info.xapoints[x]) + { + pix = info.ystrides[y] + info.xpoints[x] * ch; + + //for(c = 0; c < ch; ++c) { + // comp[c] = pix[c] * (256 - info.xapoints[x]); + // comp[c] = (comp[c] + pix[c] * info.xapoints[x]) >> 8; + // *dptr++ = comp[c]&0xff; + //} + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, 256 - info.xapoints[x]); + typename scale_info_t::uroll_comp_asgn_comp_plus_pix_mul_apoint_allshifted_8_r_t()(comp, pix, info.xapoints[x]); + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_and_ff_t()(dptr, comp); + } + else + { + //for(c = 0; c < ch; ++c) *dptr++ = (sptr[info.xpoints[x]*ch + c])&0xff; + typename scale_info_t::uroll_uref_dptr_inc_asgn_sptr_apoint_plus_idx_alland_ff_t()(dptr, sptr, info.xpoints[x]*ch); + } + } + } + } + } + else if(info.xup_yup == 1) + { //scaling down vertically + S32 Cy, j; + S32 yap; + + for(y = 0; y < dstH; y++) + { + Cy = info.yapoints[y] >> 16; + yap = info.yapoints[y] & 0xffff; + + dptr = dst + (y * dstStride); + + for(x = 0; x < dstW; x++) + { + pix = info.ystrides[y] + info.xpoints[x] * ch; + + //for(c = 0; c < ch; ++c) comp[c] = pix[c] * yap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, yap); + + pix += srcStride; + + for(j = (1 << 14) - yap; j > Cy; j -= Cy, pix += srcStride) + { + //for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cy; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cy); + } + + if(j > 0) + { + //for(c = 0; c < ch; ++c) comp[c] += pix[c] * j; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j); + } + + if(info.xapoints[x] > 0) + { + pix = info.ystrides[y] + info.xpoints[x]*ch + ch; + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * yap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, yap); + + pix += srcStride; + for(j = (1 << 14) - yap; j > Cy; j -= Cy) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cy; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cy); + pix += srcStride; + } + + if(j > 0) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * j; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j); + } + + //for(c = 0; c < ch; ++c) comp[c] = ((comp[c]*(256 - info.xapoints[x])) + ((cx[c] * info.xapoints[x]))) >> 12; + typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.xapoints[x], cx); + } + else + { + //for(c = 0; c < ch; ++c) comp[c] >>= 4; + typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4); + } + + //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff; + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10); + } + } + } + else if(info.xup_yup == 2) + { // scaling down horizontally + S32 Cx, j; + S32 xap; + + for(y = 0; y < dstH; y++) + { + dptr = dst + (y * dstStride); + + for(x = 0; x < dstW; x++) + { + Cx = info.xapoints[x] >> 16; + xap = info.xapoints[x] & 0xffff; + + pix = info.ystrides[y] + info.xpoints[x] * ch; + + //for(c = 0; c < ch; ++c) comp[c] = pix[c] * xap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(comp, pix, xap); + + pix+=ch; + for(j = (1 << 14) - xap; j > Cx; j -= Cx) + { + //for(c = 0; c < ch; ++c) comp[c] += pix[c] * Cx; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, Cx); + pix+=ch; + } + + if(j > 0) + { + //for(c = 0; c < ch; ++c) comp[c] += pix[c] * j; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(comp, pix, j); + } + + if(info.yapoints[y] > 0) + { + pix = info.ystrides[y] + info.xpoints[x]*ch + srcStride; + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap); + + pix+=ch; + for(j = (1 << 14) - xap; j > Cx; j -= Cx) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx); + pix+=ch; + } + + if(j > 0) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * j; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, j); + } + + //for(c = 0; c < ch; ++c) comp[c] = ((comp[c] * (256 - info.yapoints[y])) + ((cx[c] * info.yapoints[y]))) >> 12; + typename scale_info_t::uroll_comp_asgn_comp_mul_inv_apoint_plus_cx_mul_apoint_allshifted_12_r_t()(comp, info.yapoints[y], cx); + } + else + { + //for(c = 0; c < ch; ++c) comp[c] >>= 4; + typename scale_info_t::uroll_comp_rshftasgn_constval_t()(comp, 4); + } + + //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>10)&0xff; + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 10); + } + } + } + else + { //scale x/y - down + S32 Cx, Cy, i, j; + S32 xap, yap; + + for(y = 0; y < dstH; y++) + { + Cy = info.yapoints[y] >> 16; + yap = info.yapoints[y] & 0xffff; + + dptr = dst + (y * dstStride); + for(x = 0; x < dstW; x++) + { + Cx = info.xapoints[x] >> 16; + xap = info.xapoints[x] & 0xffff; + + sptr = info.ystrides[y] + info.xpoints[x] * ch; + pix = sptr; + sptr += srcStride; + + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap); + + pix+=ch; + for(i = (1 << 14) - xap; i > Cx; i -= Cx) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx); + pix+=ch; + } + + if(i > 0) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i); + } + + //for(c = 0; c < ch; ++c) comp[c] = (cx[c] >> 5) * yap; + typename scale_info_t::uroll_comp_asgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, yap); + + for(j = (1 << 14) - yap; j > Cy; j -= Cy) + { + pix = sptr; + sptr += srcStride; + + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap); + + pix+=ch; + for(i = (1 << 14) - xap; i > Cx; i -= Cx) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx); + pix+=ch; + } + + if(i > 0) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i); + } + + //for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * Cy; + typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, Cy); + } + + if(j > 0) + { + pix = sptr; + sptr += srcStride; + + //for(c = 0; c < ch; ++c) cx[c] = pix[c] * xap; + typename scale_info_t::uroll_inp_asgn_pix_mul_val_t()(cx, pix, xap); + + pix+=ch; + for(i = (1 << 14) - xap; i > Cx; i -= Cx) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * Cx; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, Cx); + pix+=ch; + } + + if(i > 0) + { + //for(c = 0; c < ch; ++c) cx[c] += pix[c] * i; + typename scale_info_t::uroll_inp_plusasgn_pix_mul_val_t()(cx, pix, i); + } + + //for(c = 0; c < ch; ++c) comp[c] += (cx[c] >> 5) * j; + typename scale_info_t::uroll_comp_plusasgn_cx_rshft_cval_all_mul_val_t()(comp, cx, 5, j); + } + + //for(c = 0; c < ch; ++c) *dptr++ = (comp[c]>>23)&0xff; + typename scale_info_t::uroll_uref_dptr_inc_asgn_comp_rshft_cval_and_ff_t()(dptr, comp, 23); + } + } + } //else +} + +//wrapper +static void bilinear_scale(const U8 *src, U32 srcW, U32 srcH, U32 srcCh, U32 srcStride, U8 *dst, U32 dstW, U32 dstH, U32 dstCh, U32 dstStride) +{ + llassert(srcCh == dstCh); + + switch(srcCh) + { + case 1: + bilinear_scale<1>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride); + break; + case 3: + bilinear_scale<3>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride); + break; + case 4: + bilinear_scale<4>(src, srcW, srcH, srcStride, dst, dstW, dstH, dstStride); + break; + default: + llassert(!"Implement if need"); + break; + } + +} + +//--------------------------------------------------------------------------- +// LLImage +//--------------------------------------------------------------------------- + +//static +thread_local std::string LLImage::sLastThreadErrorMessage; +bool LLImage::sUseNewByteRange = false; +S32 LLImage::sMinimalReverseByteRangePercent = 75; + +//static +void LLImage::initClass(bool use_new_byte_range, S32 minimal_reverse_byte_range_percent) +{ + sUseNewByteRange = use_new_byte_range; + sMinimalReverseByteRangePercent = minimal_reverse_byte_range_percent; +} + +//static +void LLImage::cleanupClass() +{ +} + +//static +const std::string& LLImage::getLastThreadError() +{ + static const std::string noerr("No Error"); + return sLastThreadErrorMessage.empty() ? noerr : sLastThreadErrorMessage; +} + +//static +void LLImage::setLastError(const std::string& message) +{ + sLastThreadErrorMessage = message; +} + +//--------------------------------------------------------------------------- +// LLImageBase +//--------------------------------------------------------------------------- + +LLImageBase::LLImageBase() +: mData(NULL), + mDataSize(0), + mWidth(0), + mHeight(0), + mComponents(0), + mBadBufferAllocation(false), + mAllowOverSize(false) +{} + +// virtual +LLImageBase::~LLImageBase() +{ + deleteData(); // virtual +} + +// virtual +void LLImageBase::dump() +{ + LL_INFOS() << "LLImageBase mComponents " << mComponents + << " mData " << mData + << " mDataSize " << mDataSize + << " mWidth " << mWidth + << " mHeight " << mHeight + << LL_ENDL; +} + +// virtual +void LLImageBase::sanityCheck() +{ + if (mWidth > MAX_IMAGE_SIZE + || mHeight > MAX_IMAGE_SIZE + || mDataSize > (S32)MAX_IMAGE_DATA_SIZE + || mComponents > (S8)MAX_IMAGE_COMPONENTS + ) + { + LL_ERRS() << "Failed LLImageBase::sanityCheck " + << "width " << mWidth + << "height " << mHeight + << "datasize " << mDataSize + << "components " << mComponents + << "data " << mData + << LL_ENDL; + } +} + +// virtual +void LLImageBase::deleteData() +{ + ll_aligned_free_16(mData); + mDataSize = 0; + mData = NULL; +} + +// virtual +U8* LLImageBase::allocateData(S32 size) +{ + //make this function thread-safe. + static const U32 MAX_BUFFER_SIZE = 4096 * 4096 * 16; //256 MB + mBadBufferAllocation = false; + + if (size < 0) + { + size = mWidth * mHeight * mComponents; + if (size <= 0) + { + LL_WARNS() << llformat("LLImageBase::allocateData called with bad dimensions: %dx%dx%d",mWidth,mHeight,(S32)mComponents) << LL_ENDL; + mBadBufferAllocation = true; + } + } + + if (!mBadBufferAllocation && (size < 1 || size > MAX_BUFFER_SIZE)) + { + LL_INFOS() << "width: " << mWidth << " height: " << mHeight << " components: " << mComponents << LL_ENDL ; + if(mAllowOverSize) + { + LL_INFOS() << "Oversize: " << size << LL_ENDL ; + } + else + { + LL_WARNS() << "LLImageBase::allocateData: bad size: " << size << LL_ENDL; + mBadBufferAllocation = true; + } + } + + if (!mBadBufferAllocation && (!mData || size != mDataSize)) + { + deleteData(); // virtual + mData = (U8*)ll_aligned_malloc_16(size); + if (!mData) + { + LL_WARNS() << "Failed to allocate image data size [" << size << "]" << LL_ENDL; + mBadBufferAllocation = true; + } + } + + if (mBadBufferAllocation) + { + size = 0; + mWidth = mHeight = 0; + if (mData) + { + deleteData(); // virtual + mData = NULL; + } + } + mDataSize = size; + + return mData; +} + +// virtual +U8* LLImageBase::reallocateData(S32 size) +{ + U8 *new_datap = (U8*)ll_aligned_malloc_16(size); + if (!new_datap) + { + LL_WARNS() << "Out of memory in LLImageBase::reallocateData" << LL_ENDL; + return 0; + } + if (mData) + { + S32 bytes = llmin(mDataSize, size); + memcpy(new_datap, mData, bytes); /* Flawfinder: ignore */ + ll_aligned_free_16(mData) ; + } + mData = new_datap; + mDataSize = size; + mBadBufferAllocation = false; + return mData; +} + +const U8* LLImageBase::getData() const +{ + if(mBadBufferAllocation) + { + LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL ; + return NULL; + } + + return mData; +} // read only + +U8* LLImageBase::getData() +{ + if(mBadBufferAllocation) + { + LL_WARNS() << "Bad memory allocation for the image buffer!" << LL_ENDL; + return NULL; + } + + return mData; +} + +bool LLImageBase::isBufferInvalid() const +{ + return mBadBufferAllocation || mData == NULL; +} + +void LLImageBase::setSize(S32 width, S32 height, S32 ncomponents) +{ + mWidth = width; + mHeight = height; + mComponents = ncomponents; +} + +U8* LLImageBase::allocateDataSize(S32 width, S32 height, S32 ncomponents, S32 size) +{ + setSize(width, height, ncomponents); + return allocateData(size); // virtual +} + +//--------------------------------------------------------------------------- +// LLImageRaw +//--------------------------------------------------------------------------- + +S32 LLImageRaw::sRawImageCount = 0; + +LLImageRaw::LLImageRaw() + : LLImageBase() +{ + ++sRawImageCount; +} + +LLImageRaw::LLImageRaw(U16 width, U16 height, S8 components) + : LLImageBase() +{ + //llassert( S32(width) * S32(height) * S32(components) <= MAX_IMAGE_DATA_SIZE ); + allocateDataSize(width, height, components); + ++sRawImageCount; +} + +LLImageRaw::LLImageRaw(const U8* data, U16 width, U16 height, S8 components) + : LLImageBase() +{ + if (allocateDataSize(width, height, components)) + { + memcpy(getData(), data, width * height * components); + } +} + +LLImageRaw::LLImageRaw(U8 *data, U16 width, U16 height, S8 components, bool no_copy) + : LLImageBase() +{ + if(no_copy) + { + setDataAndSize(data, width, height, components); + } + else if(allocateDataSize(width, height, components)) + { + memcpy(getData(), data, width*height*components); + } + ++sRawImageCount; +} + +//LLImageRaw::LLImageRaw(const std::string& filename, bool j2c_lowest_mip_only) +// : LLImageBase() +//{ +// createFromFile(filename, j2c_lowest_mip_only); +//} + +LLImageRaw::~LLImageRaw() +{ + // NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData() + // NOT LLImageRaw::deleteData() + deleteData(); + --sRawImageCount; +} + +// virtual +U8* LLImageRaw::allocateData(S32 size) +{ + LLImageDataLock lock(this); + + U8* res = LLImageBase::allocateData(size); + return res; +} + +// virtual +U8* LLImageRaw::reallocateData(S32 size) +{ + LLImageDataLock lock(this); + + U8* res = LLImageBase::reallocateData(size); + return res; +} + +void LLImageRaw::releaseData() +{ + LLImageDataLock lock(this); + + LLImageBase::setSize(0, 0, 0); + LLImageBase::setDataAndSize(nullptr, 0); +} + +// virtual +void LLImageRaw::deleteData() +{ + LLImageDataLock lock(this); + + LLImageBase::deleteData(); +} + +void LLImageRaw::setDataAndSize(U8 *data, S32 width, S32 height, S8 components) +{ + LLImageDataLock lock(this); + + if(data == getData()) + { + return ; + } + + deleteData(); + + LLImageBase::setSize(width, height, components) ; + LLImageBase::setDataAndSize(data, width * height * components) ; +} + +bool LLImageRaw::resize(U16 width, U16 height, S8 components) +{ + LLImageDataLock lock(this); + + if ((getWidth() == width) && (getHeight() == height) && (getComponents() == components) && !isBufferInvalid()) + { + return true; + } + // Reallocate the data buffer. + deleteData(); + + allocateDataSize(width,height,components); + + return !isBufferInvalid(); +} + +bool LLImageRaw::setSubImage(U32 x_pos, U32 y_pos, U32 width, U32 height, + const U8 *data, U32 stride, bool reverse_y) +{ + LLImageDataLock lock(this); + + if (!getData()) + { + return false; + } + if (!data) + { + return false; + } + + // Should do some simple bounds checking + + U32 i; + for (i = 0; i < height; i++) + { + const U32 row = reverse_y ? height - 1 - i : i; + const U32 from_offset = row * ((stride == 0) ? width*getComponents() : stride); + const U32 to_offset = (y_pos + i)*getWidth() + x_pos; + memcpy(getData() + to_offset*getComponents(), /* Flawfinder: ignore */ + data + from_offset, getComponents()*width); + } + + return true; +} + +void LLImageRaw::clear(U8 r, U8 g, U8 b, U8 a) +{ + llassert( getComponents() <= 4 ); + + LLImageDataLock lock(this); + + // This is fairly bogus, but it'll do for now. + if (isBufferInvalid()) + { + LL_WARNS() << "Invalid image buffer" << LL_ENDL; + return; + } + + U8 *pos = getData(); + U32 x, y; + for (x = 0; x < getWidth(); x++) + { + for (y = 0; y < getHeight(); y++) + { + *pos = r; + pos++; + if (getComponents() == 1) + { + continue; + } + *pos = g; + pos++; + if (getComponents() == 2) + { + continue; + } + *pos = b; + pos++; + if (getComponents() == 3) + { + continue; + } + *pos = a; + pos++; + } + } +} + +// Reverses the order of the rows in the image +void LLImageRaw::verticalFlip() +{ + LLImageDataLock lock(this); + + S32 row_bytes = getWidth() * getComponents(); + llassert(row_bytes > 0); + std::vector<U8> line_buffer(row_bytes); + S32 mid_row = getHeight() / 2; + for( S32 row = 0; row < mid_row; row++ ) + { + U8* row_a_data = getData() + row * row_bytes; + U8* row_b_data = getData() + (getHeight() - 1 - row) * row_bytes; + memcpy( &line_buffer[0], row_a_data, row_bytes ); + memcpy( row_a_data, row_b_data, row_bytes ); + memcpy( row_b_data, &line_buffer[0], row_bytes ); + } +} + + +bool LLImageRaw::optimizeAwayAlpha() +{ + LLImageDataLock lock(this); + + if (getComponents() == 4) + { + U8* data = getData(); + U32 pixels = getWidth() * getHeight(); + + // check alpha channel for all 255 + for (U32 i = 0; i < pixels; ++i) + { + if (data[i * 4 + 3] != 255) + { + return false; + } + } + + // alpha channel is all 255, make a new copy of data without alpha channel + U8* new_data = (U8*) ll_aligned_malloc_16(getWidth() * getHeight() * 3); + + for (U32 i = 0; i < pixels; ++i) + { + U32 di = i * 3; + U32 si = i * 4; + for (U32 j = 0; j < 3; ++j) + { + new_data[di+j] = data[si+j]; + } + } + + setDataAndSize(new_data, getWidth(), getHeight(), 3); + + return true; + } + + return false; +} + +void LLImageRaw::expandToPowerOfTwo(S32 max_dim, bool scale_image) +{ + LLImageDataLock lock(this); + + // Find new sizes + S32 new_width = expandDimToPowerOfTwo(getWidth(), max_dim); + S32 new_height = expandDimToPowerOfTwo(getHeight(), max_dim); + + scale( new_width, new_height, scale_image ); +} + +void LLImageRaw::contractToPowerOfTwo(S32 max_dim, bool scale_image) +{ + LLImageDataLock lock(this); + + // Find new sizes + S32 new_width = contractDimToPowerOfTwo(getWidth(), MIN_IMAGE_SIZE); + S32 new_height = contractDimToPowerOfTwo(getHeight(), MIN_IMAGE_SIZE); + + scale( new_width, new_height, scale_image ); +} + +// static +S32 LLImageRaw::biasedDimToPowerOfTwo(S32 curr_dim, S32 max_dim) +{ + // Strong bias towards rounding down (to save bandwidth) + // No bias would mean THRESHOLD == 1.5f; + const F32 THRESHOLD = 1.75f; + + // Find new sizes + S32 larger_dim = max_dim; // 2^n >= curr_dim + S32 smaller_dim = max_dim; // 2^(n-1) <= curr_dim + while( (smaller_dim > curr_dim) && (smaller_dim > MIN_IMAGE_SIZE) ) + { + larger_dim = smaller_dim; + smaller_dim >>= 1; + } + return ( ((F32)curr_dim / (F32)smaller_dim) > THRESHOLD ) ? larger_dim : smaller_dim; +} + +// static +S32 LLImageRaw::expandDimToPowerOfTwo(S32 curr_dim, S32 max_dim) +{ + S32 new_dim = MIN_IMAGE_SIZE; + while( (new_dim < curr_dim) && (new_dim < max_dim) ) + { + new_dim <<= 1; + } + return new_dim; +} + +// static +S32 LLImageRaw::contractDimToPowerOfTwo(S32 curr_dim, S32 min_dim) +{ + S32 new_dim = MAX_IMAGE_SIZE; + while( (new_dim > curr_dim) && (new_dim > min_dim) ) + { + new_dim >>= 1; + } + return new_dim; +} + +void LLImageRaw::biasedScaleToPowerOfTwo(S32 max_dim) +{ + LLImageDataLock lock(this); + + // Find new sizes + S32 new_width = biasedDimToPowerOfTwo(getWidth(),max_dim); + S32 new_height = biasedDimToPowerOfTwo(getHeight(),max_dim); + + scale( new_width, new_height ); +} + +// static +// Calculates (U8)(255*(a/255.f)*(b/255.f) + 0.5f). Thanks, Jim Blinn! +inline U8 LLImageRaw::fastFractionalMult( U8 a, U8 b ) +{ + U32 i = a * b + 128; + return U8((i + (i>>8)) >> 8); +} + + +void LLImageRaw::composite( const LLImageRaw* src ) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataSharedLock lockIn(src); + LLImageDataLock lockOut(this); + + if (!validateSrcAndDst("LLImageRaw::composite", src, dst)) + { + return; + } + + llassert(3 == src->getComponents()); + llassert(3 == dst->getComponents()); + + if( 3 == dst->getComponents() ) + { + if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ) + { + // No scaling needed + if( 3 == src->getComponents() ) + { + copyUnscaled( src ); // alpha is one so just copy the data. + } + else + { + compositeUnscaled4onto3( src ); + } + } + else + { + if( 3 == src->getComponents() ) + { + copyScaled( src ); // alpha is one so just copy the data. + } + else + { + compositeScaled4onto3( src ); + } + } + } +} + + +// Src and dst can be any size. Src has 4 components. Dst has 3 components. +void LLImageRaw::compositeScaled4onto3(const LLImageRaw* src) +{ + LL_INFOS() << "compositeScaled4onto3" << LL_ENDL; + + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataLock lock(this); + + llassert( (4 == src->getComponents()) && (3 == dst->getComponents()) ); + + S32 temp_data_size = src->getWidth() * dst->getHeight() * src->getComponents(); + llassert_always(temp_data_size > 0); + std::vector<U8> temp_buffer(temp_data_size); + + // Vertical: scale but no composite + for( S32 col = 0; col < src->getWidth(); col++ ) + { + copyLineScaled( src->getData() + (src->getComponents() * col), &temp_buffer[0] + (src->getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() ); + } + + // Horizontal: scale and composite + for( S32 row = 0; row < dst->getHeight(); row++ ) + { + compositeRowScaled4onto3( &temp_buffer[0] + (src->getComponents() * src->getWidth() * row), dst->getData() + (dst->getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth() ); + } +} + + +// Src and dst are same size. Src has 4 components. Dst has 3 components. +void LLImageRaw::compositeUnscaled4onto3( const LLImageRaw* src ) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataLock lock(this); + + llassert( (3 == src->getComponents()) || (4 == src->getComponents()) ); + llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ); + + const U8* src_data = src->getData(); + U8* dst_data = dst->getData(); + S32 pixels = getWidth() * getHeight(); + while( pixels-- ) + { + U8 alpha = src_data[3]; + if( alpha ) + { + if( 255 == alpha ) + { + dst_data[0] = src_data[0]; + dst_data[1] = src_data[1]; + dst_data[2] = src_data[2]; + } + else + { + + U8 transparency = 255 - alpha; + dst_data[0] = fastFractionalMult( dst_data[0], transparency ) + fastFractionalMult( src_data[0], alpha ); + dst_data[1] = fastFractionalMult( dst_data[1], transparency ) + fastFractionalMult( src_data[1], alpha ); + dst_data[2] = fastFractionalMult( dst_data[2], transparency ) + fastFractionalMult( src_data[2], alpha ); + } + } + + src_data += 4; + dst_data += 3; + } +} + + +void LLImageRaw::copyUnscaledAlphaMask( const LLImageRaw* src, const LLColor4U& fill) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataSharedLock lockIn(src); + LLImageDataLock lockOut(this); + + if (!validateSrcAndDst("LLImageRaw::copyUnscaledAlphaMask", src, dst)) + { + return; + } + + llassert( 1 == src->getComponents() ); + llassert( 4 == dst->getComponents() ); + llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ); + + S32 pixels = getWidth() * getHeight(); + const U8* src_data = src->getData(); + U8* dst_data = dst->getData(); + for ( S32 i = 0; i < pixels; i++ ) + { + dst_data[0] = fill.mV[0]; + dst_data[1] = fill.mV[1]; + dst_data[2] = fill.mV[2]; + dst_data[3] = src_data[0]; + src_data += 1; + dst_data += 4; + } +} + + +// Fill the buffer with a constant color +void LLImageRaw::fill( const LLColor4U& color ) +{ + LLImageDataLock lock(this); + + if (isBufferInvalid()) + { + LL_WARNS() << "Invalid image buffer" << LL_ENDL; + return; + } + + S32 pixels = getWidth() * getHeight(); + if( 4 == getComponents() ) + { + U32* data = (U32*) getData(); + U32 rgbaColor = color.asRGBA(); + for( S32 i = 0; i < pixels; i++ ) + { + data[ i ] = rgbaColor; + } + } + else + if( 3 == getComponents() ) + { + U8* data = getData(); + for( S32 i = 0; i < pixels; i++ ) + { + data[0] = color.mV[0]; + data[1] = color.mV[1]; + data[2] = color.mV[2]; + data += 3; + } + } +} + +LLPointer<LLImageRaw> LLImageRaw::duplicate() +{ + if(getNumRefs() < 2) + { + return this; //nobody else refences to this image, no need to duplicate. + } + + LLImageDataSharedLock lock(this); + + //make a duplicate + LLPointer<LLImageRaw> dup = new LLImageRaw(getData(), getWidth(), getHeight(), getComponents()); + return dup; +} + +// Src and dst can be any size. Src and dst can each have 3 or 4 components. +void LLImageRaw::copy(const LLImageRaw* src) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataSharedLock lockIn(src); + LLImageDataLock lockOut(this); + + if (!validateSrcAndDst("LLImageRaw::copy", src, dst)) + { + return; + } + + if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ) + { + // No scaling needed + if( src->getComponents() == dst->getComponents() ) + { + copyUnscaled( src ); + } + else + if( 3 == src->getComponents() ) + { + copyUnscaled3onto4( src ); + } + else + { + // 4 == src->getComponents() + copyUnscaled4onto3( src ); + } + } + else + { + // Scaling needed + // No scaling needed + if( src->getComponents() == dst->getComponents() ) + { + copyScaled( src ); + } + else + if( 3 == src->getComponents() ) + { + copyScaled3onto4( src ); + } + else + { + // 4 == src->getComponents() + copyScaled4onto3( src ); + } + } +} + +// Src and dst are same size. Src and dst have same number of components. +void LLImageRaw::copyUnscaled(const LLImageRaw* src) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataLock lock(this); + + llassert( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) ); + llassert( src->getComponents() == dst->getComponents() ); + llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ); + + memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */ +} + + +// Src and dst can be any size. Src has 3 components. Dst has 4 components. +void LLImageRaw::copyScaled3onto4(const LLImageRaw* src) +{ + llassert( (3 == src->getComponents()) && (4 == getComponents()) ); + + // Slow, but simple. Optimize later if needed. + LLImageRaw temp( src->getWidth(), src->getHeight(), 4); + temp.copyUnscaled3onto4( src ); + copyScaled( &temp ); +} + + +// Src and dst can be any size. Src has 4 components. Dst has 3 components. +void LLImageRaw::copyScaled4onto3(const LLImageRaw* src) +{ + llassert( (4 == src->getComponents()) && (3 == getComponents()) ); + + // Slow, but simple. Optimize later if needed. + LLImageRaw temp( src->getWidth(), src->getHeight(), 3); + temp.copyUnscaled4onto3( src ); + copyScaled( &temp ); +} + + +// Src and dst are same size. Src has 4 components. Dst has 3 components. +void LLImageRaw::copyUnscaled4onto3( const LLImageRaw* src ) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataLock lock(this); + + llassert( (3 == dst->getComponents()) && (4 == src->getComponents()) ); + llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ); + + S32 pixels = getWidth() * getHeight(); + const U8* src_data = src->getData(); + U8* dst_data = dst->getData(); + for( S32 i=0; i<pixels; i++ ) + { + dst_data[0] = src_data[0]; + dst_data[1] = src_data[1]; + dst_data[2] = src_data[2]; + src_data += 4; + dst_data += 3; + } +} + + +// Src and dst are same size. Src has 3 components. Dst has 4 components. +void LLImageRaw::copyUnscaled3onto4( const LLImageRaw* src ) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataLock lock(this); + + llassert( 3 == src->getComponents() ); + llassert( 4 == dst->getComponents() ); + llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ); + + S32 pixels = getWidth() * getHeight(); + const U8* src_data = src->getData(); + U8* dst_data = dst->getData(); + for( S32 i=0; i<pixels; i++ ) + { + dst_data[0] = src_data[0]; + dst_data[1] = src_data[1]; + dst_data[2] = src_data[2]; + dst_data[3] = 255; + src_data += 3; + dst_data += 4; + } +} + + +// Src and dst can be any size. Src and dst have same number of components. +void LLImageRaw::copyScaled( const LLImageRaw* src ) +{ + LLImageRaw* dst = this; // Just for clarity. + + LLImageDataSharedLock lockIn(src); + LLImageDataLock lockOut(this); + + if (!validateSrcAndDst("LLImageRaw::copyScaled", src, dst)) + { + return; + } + + llassert_always( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) ); + llassert_always( src->getComponents() == dst->getComponents() ); + + if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) ) + { + memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */ + return; + } + + bilinear_scale( + src->getData(), src->getWidth(), src->getHeight(), src->getComponents(), src->getWidth()*src->getComponents() + , dst->getData(), dst->getWidth(), dst->getHeight(), dst->getComponents(), dst->getWidth()*dst->getComponents() + ); + + /* + S32 temp_data_size = src->getWidth() * dst->getHeight() * getComponents(); + llassert_always(temp_data_size > 0); + std::vector<U8> temp_buffer(temp_data_size); + + // Vertical + for( S32 col = 0; col < src->getWidth(); col++ ) + { + copyLineScaled( src->getData() + (getComponents() * col), &temp_buffer[0] + (getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() ); + } + + // Horizontal + for( S32 row = 0; row < dst->getHeight(); row++ ) + { + copyLineScaled( &temp_buffer[0] + (getComponents() * src->getWidth() * row), dst->getData() + (getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth(), 1, 1 ); + } + */ +} + + +bool LLImageRaw::scale( S32 new_width, S32 new_height, bool scale_image_data ) +{ + LLImageDataLock lock(this); + + S32 components = getComponents(); + if (components != 1 && components != 3 && components != 4) + { + LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL; + return false; + } + + if (isBufferInvalid()) + { + LL_WARNS() << "Invalid image buffer" << LL_ENDL; + return false; + } + + S32 old_width = getWidth(); + S32 old_height = getHeight(); + + if( (old_width == new_width) && (old_height == new_height) ) + { + return true; // Nothing to do. + } + + // Reallocate the data buffer. + + if (scale_image_data) + { + S32 new_data_size = new_width * new_height * components; + + if (new_data_size > 0) + { + U8 *new_data = (U8*)ll_aligned_malloc_16(new_data_size); + if(NULL == new_data) + { + return false; + } + + bilinear_scale(getData(), old_width, old_height, components, old_width*components, new_data, new_width, new_height, components, new_width*components); + setDataAndSize(new_data, new_width, new_height, components); + } + } + else try + { + // copy out existing image data + S32 temp_data_size = old_width * old_height * components; + std::vector<U8> temp_buffer(temp_data_size); + memcpy(&temp_buffer[0], getData(), temp_data_size); + + // allocate new image data, will delete old data + U8* new_buffer = allocateDataSize(new_width, new_height, components); + + if (!new_buffer) + { + LL_WARNS() << "Failed to allocate new image data buffer" << LL_ENDL; + return false; + } + + for( S32 row = 0; row < new_height; row++ ) + { + if (row < old_height) + { + memcpy(new_buffer + (new_width * row * components), &temp_buffer[0] + (old_width * row * components), components * llmin(old_width, new_width)); + if (old_width < new_width) + { + // pad out rest of row with black + memset(new_buffer + (components * ((new_width * row) + old_width)), 0, components * (new_width - old_width)); + } + } + else + { + // pad remaining rows with black + memset(new_buffer + (new_width * row * components), 0, new_width * components); + } + } + } + catch (std::bad_alloc&) // for temp_buffer + { + LL_WARNS() << "Failed to allocate temporary image buffer" << LL_ENDL; + return false; + } + + return true ; +} + +LLPointer<LLImageRaw> LLImageRaw::scaled(S32 new_width, S32 new_height) +{ + LLPointer<LLImageRaw> result; + + LLImageDataLock lock(this); + + S32 components = getComponents(); + if (components != 1 && components != 3 && components != 4) + { + LL_WARNS() << "Invalid getComponents value (" << components << ")" << LL_ENDL; + return result; + } + + if (isBufferInvalid()) + { + LL_WARNS() << "Invalid image buffer" << LL_ENDL; + return result; + } + + S32 old_width = getWidth(); + S32 old_height = getHeight(); + + if ((old_width == new_width) && (old_height == new_height)) + { + result = new LLImageRaw(old_width, old_height, components); + if (!result || result->isBufferInvalid()) + { + LL_WARNS() << "Failed to allocate new image" << LL_ENDL; + return result; + } + memcpy(result->getData(), getData(), getDataSize()); + } + else + { + S32 new_data_size = new_width * new_height * components; + + if (new_data_size > 0) + { + result = new LLImageRaw(new_width, new_height, components); + if (!result || result->isBufferInvalid()) + { + LL_WARNS() << "Failed to allocate new image" << LL_ENDL; + return result; + } + bilinear_scale(getData(), old_width, old_height, components, old_width*components, result->getData(), new_width, new_height, components, new_width*components); + } + } + + return result; +} + +void LLImageRaw::copyLineScaled( const U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len, S32 in_pixel_step, S32 out_pixel_step ) +{ + const S32 components = getComponents(); + llassert( components >= 1 && components <= 4 ); + + const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new + const F32 norm_factor = 1.f / ratio; + + S32 goff = components >= 2 ? 1 : 0; + S32 boff = components >= 3 ? 2 : 0; + for( S32 x = 0; x < out_pixel_len; x++ ) + { + // Sample input pixels in range from sample0 to sample1. + // Avoid floating point accumulation error... don't just add ratio each time. JC + const F32 sample0 = x * ratio; + const F32 sample1 = (x+1) * ratio; + const S32 index0 = llfloor(sample0); // left integer (floor) + const S32 index1 = llfloor(sample1); // right integer (floor) + const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left + const F32 fract1 = sample1 - F32(index1); // spill-over on right + + if( index0 == index1 ) + { + // Interval is embedded in one input pixel + S32 t0 = x * out_pixel_step * components; + S32 t1 = index0 * in_pixel_step * components; + U8* outp = out + t0; + const U8* inp = in + t1; + for (S32 i = 0; i < components; ++i) + { + *outp = *inp; + ++outp; + ++inp; + } + } + else + { + // Left straddle + S32 t1 = index0 * in_pixel_step * components; + F32 r = in[t1 + 0] * fract0; + F32 g = in[t1 + goff] * fract0; + F32 b = in[t1 + boff] * fract0; + F32 a = 0; + if( components == 4) + { + a = in[t1 + 3] * fract0; + } + + // Central interval + if (components < 4) + { + for( S32 u = index0 + 1; u < index1; u++ ) + { + S32 t2 = u * in_pixel_step * components; + r += in[t2 + 0]; + g += in[t2 + goff]; + b += in[t2 + boff]; + } + } + else + { + for( S32 u = index0 + 1; u < index1; u++ ) + { + S32 t2 = u * in_pixel_step * components; + r += in[t2 + 0]; + g += in[t2 + 1]; + b += in[t2 + 2]; + a += in[t2 + 3]; + } + } + + // right straddle + // Watch out for reading off of end of input array. + if( fract1 && index1 < in_pixel_len ) + { + S32 t3 = index1 * in_pixel_step * components; + if (components < 4) + { + U8 in0 = in[t3 + 0]; + U8 in1 = in[t3 + goff]; + U8 in2 = in[t3 + boff]; + r += in0 * fract1; + g += in1 * fract1; + b += in2 * fract1; + } + else + { + U8 in0 = in[t3 + 0]; + U8 in1 = in[t3 + 1]; + U8 in2 = in[t3 + 2]; + U8 in3 = in[t3 + 3]; + r += in0 * fract1; + g += in1 * fract1; + b += in2 * fract1; + a += in3 * fract1; + } + } + + r *= norm_factor; + g *= norm_factor; + b *= norm_factor; + a *= norm_factor; // skip conditional + + S32 t4 = x * out_pixel_step * components; + out[t4 + 0] = U8(ll_round(r)); + if (components >= 2) + out[t4 + 1] = U8(ll_round(g)); + if (components >= 3) + out[t4 + 2] = U8(ll_round(b)); + if( components == 4) + out[t4 + 3] = U8(ll_round(a)); + } + } +} + +void LLImageRaw::compositeRowScaled4onto3( const U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len ) +{ + llassert( getComponents() == 3 ); + + const S32 IN_COMPONENTS = 4; + const S32 OUT_COMPONENTS = 3; + + const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new + const F32 norm_factor = 1.f / ratio; + + for( S32 x = 0; x < out_pixel_len; x++ ) + { + // Sample input pixels in range from sample0 to sample1. + // Avoid floating point accumulation error... don't just add ratio each time. JC + const F32 sample0 = x * ratio; + const F32 sample1 = (x+1) * ratio; + const S32 index0 = S32(sample0); // left integer (floor) + const S32 index1 = S32(sample1); // right integer (floor) + const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left + const F32 fract1 = sample1 - F32(index1); // spill-over on right + + U8 in_scaled_r; + U8 in_scaled_g; + U8 in_scaled_b; + U8 in_scaled_a; + + if( index0 == index1 ) + { + // Interval is embedded in one input pixel + S32 t1 = index0 * IN_COMPONENTS; + in_scaled_r = in[t1 + 0]; + in_scaled_g = in[t1 + 0]; + in_scaled_b = in[t1 + 0]; + in_scaled_a = in[t1 + 0]; + } + else + { + // Left straddle + S32 t1 = index0 * IN_COMPONENTS; + F32 r = in[t1 + 0] * fract0; + F32 g = in[t1 + 1] * fract0; + F32 b = in[t1 + 2] * fract0; + F32 a = in[t1 + 3] * fract0; + + // Central interval + for( S32 u = index0 + 1; u < index1; u++ ) + { + S32 t2 = u * IN_COMPONENTS; + r += in[t2 + 0]; + g += in[t2 + 1]; + b += in[t2 + 2]; + a += in[t2 + 3]; + } + + // right straddle + // Watch out for reading off of end of input array. + if( fract1 && index1 < in_pixel_len ) + { + S32 t3 = index1 * IN_COMPONENTS; + r += in[t3 + 0] * fract1; + g += in[t3 + 1] * fract1; + b += in[t3 + 2] * fract1; + a += in[t3 + 3] * fract1; + } + + r *= norm_factor; + g *= norm_factor; + b *= norm_factor; + a *= norm_factor; + + in_scaled_r = U8(ll_round(r)); + in_scaled_g = U8(ll_round(g)); + in_scaled_b = U8(ll_round(b)); + in_scaled_a = U8(ll_round(a)); + } + + if( in_scaled_a ) + { + if( 255 == in_scaled_a ) + { + out[0] = in_scaled_r; + out[1] = in_scaled_g; + out[2] = in_scaled_b; + } + else + { + U8 transparency = 255 - in_scaled_a; + out[0] = fastFractionalMult( out[0], transparency ) + fastFractionalMult( in_scaled_r, in_scaled_a ); + out[1] = fastFractionalMult( out[1], transparency ) + fastFractionalMult( in_scaled_g, in_scaled_a ); + out[2] = fastFractionalMult( out[2], transparency ) + fastFractionalMult( in_scaled_b, in_scaled_a ); + } + } + out += OUT_COMPONENTS; + } +} + +// static +bool LLImageRaw::validateSrcAndDst(std::string func, const LLImageRaw* src, const LLImageRaw* dst) +{ + LLImageDataSharedLock lockIn(src); + LLImageDataLock lockOut(dst); + + if (!src || !dst || src->isBufferInvalid() || dst->isBufferInvalid()) + { + LL_WARNS() << func << ": Source: "; + if (!src) LL_CONT << "Null pointer"; + else if (src->isBufferInvalid()) LL_CONT << "Invalid buffer"; + else LL_CONT << "OK"; + + LL_CONT << "; Destination: "; + if (!dst) LL_CONT << "Null pointer"; + else if (dst->isBufferInvalid()) LL_CONT << "Invalid buffer"; + else LL_CONT << "OK"; + LL_CONT << "." << LL_ENDL; + + return false; + } + return true; +} + +//---------------------------------------------------------------------------- + +static struct +{ + const char* exten; + EImageCodec codec; +} +file_extensions[] = +{ + { "bmp", IMG_CODEC_BMP }, + { "tga", IMG_CODEC_TGA }, + { "j2c", IMG_CODEC_J2C }, + { "jp2", IMG_CODEC_J2C }, + { "texture", IMG_CODEC_J2C }, + { "jpg", IMG_CODEC_JPEG }, + { "jpeg", IMG_CODEC_JPEG }, + { "mip", IMG_CODEC_DXT }, + { "dxt", IMG_CODEC_DXT }, + { "png", IMG_CODEC_PNG } +}; +#define NUM_FILE_EXTENSIONS LL_ARRAY_SIZE(file_extensions) +#if 0 +static std::string find_file(std::string &name, S8 *codec) +{ + std::string tname; + for (int i=0; i<(int)(NUM_FILE_EXTENSIONS); i++) + { + tname = name + "." + std::string(file_extensions[i].exten); + llifstream ifs(tname.c_str(), llifstream::binary); + if (ifs.is_open()) + { + ifs.close(); + if (codec) + *codec = file_extensions[i].codec; + return std::string(file_extensions[i].exten); + } + } + return std::string(""); +} +#endif +EImageCodec LLImageBase::getCodecFromExtension(const std::string& exten) +{ + if (!exten.empty()) + { + for (int i = 0; i < (int)(NUM_FILE_EXTENSIONS); i++) + { + if (exten == file_extensions[i].exten) + return file_extensions[i].codec; + } + } + return IMG_CODEC_INVALID; +} +#if 0 +bool LLImageRaw::createFromFile(const std::string &filename, bool j2c_lowest_mip_only) +{ + std::string name = filename; + size_t dotidx = name.rfind('.'); + S8 codec = IMG_CODEC_INVALID; + std::string exten; + + deleteData(); // delete any existing data + + if (dotidx != std::string::npos) + { + exten = name.substr(dotidx+1); + LLStringUtil::toLower(exten); + codec = getCodecFromExtension(exten); + } + else + { + exten = find_file(name, &codec); + name = name + "." + exten; + } + if (codec == IMG_CODEC_INVALID) + { + return false; // format not recognized + } + + llifstream ifs(name.c_str(), llifstream::binary); + if (!ifs.is_open()) + { + // SJB: changed from LL_INFOS() to LL_DEBUGS() to reduce spam + LL_DEBUGS() << "Unable to open image file: " << name << LL_ENDL; + return false; + } + + ifs.seekg (0, std::ios::end); + int length = ifs.tellg(); + if (j2c_lowest_mip_only && length > 2048) + { + length = 2048; + } + ifs.seekg (0, std::ios::beg); + + if (!length) + { + LL_INFOS() << "Zero length file file: " << name << LL_ENDL; + return false; + } + + LLPointer<LLImageFormatted> image = LLImageFormatted::createFromType(codec); + llassert(image.notNull()); + + U8 *buffer = image->allocateData(length); + ifs.read ((char*)buffer, length); + ifs.close(); + + bool success; + + success = image->updateData(); + if (success) + { + if (j2c_lowest_mip_only && codec == IMG_CODEC_J2C) + { + S32 width = image->getWidth(); + S32 height = image->getHeight(); + S32 discard_level = 0; + while (width > 1 && height > 1 && discard_level < MAX_DISCARD_LEVEL) + { + width >>= 1; + height >>= 1; + discard_level++; + } + ((LLImageJ2C *)((LLImageFormatted*)image))->setDiscardLevel(discard_level); + } + success = image->decode(this, 100000.0f); + } + + image = NULL; // deletes image + if (!success) + { + deleteData(); + LL_WARNS() << "Unable to decode image" << name << LL_ENDL; + return false; + } + + return true; +} +#endif +//--------------------------------------------------------------------------- +// LLImageFormatted +//--------------------------------------------------------------------------- + +//static +S32 LLImageFormatted::sGlobalFormattedMemory = 0; + +LLImageFormatted::LLImageFormatted(S8 codec) + : LLImageBase(), + mCodec(codec), + mDecoding(0), + mDecoded(0), + mDiscardLevel(-1), + mLevels(0) +{ +} + +// virtual +LLImageFormatted::~LLImageFormatted() +{ + // NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData() + // NOT LLImageFormatted::deleteData() + deleteData(); +} + +//---------------------------------------------------------------------------- + +//virtual +void LLImageFormatted::resetLastError() +{ + LLImage::setLastError(""); +} + +//virtual +void LLImageFormatted::setLastError(const std::string& message, const std::string& filename) +{ + std::string error = message; + if (!filename.empty()) + error += std::string(" FILE: ") + filename; + LLImage::setLastError(error); +} + +//---------------------------------------------------------------------------- + +// static +LLImageFormatted* LLImageFormatted::createFromType(S8 codec) +{ + LLImageFormatted* image; + switch(codec) + { + case IMG_CODEC_BMP: + image = new LLImageBMP(); + break; + case IMG_CODEC_TGA: + image = new LLImageTGA(); + break; + case IMG_CODEC_JPEG: + image = new LLImageJPEG(); + break; + case IMG_CODEC_PNG: + image = new LLImagePNG(); + break; + case IMG_CODEC_J2C: + image = new LLImageJ2C(); + break; + case IMG_CODEC_DXT: + image = new LLImageDXT(); + break; + default: + image = NULL; + break; + } + return image; +} + +// static +LLImageFormatted* LLImageFormatted::createFromExtension(const std::string& instring) +{ + std::string exten; + size_t dotidx = instring.rfind('.'); + if (dotidx != std::string::npos) + { + exten = instring.substr(dotidx+1); + } + else + { + exten = instring; + } + S8 codec = getCodecFromExtension(exten); + return createFromType(codec); +} +//---------------------------------------------------------------------------- + +// virtual +void LLImageFormatted::dump() +{ + LLImageBase::dump(); + + LL_INFOS() << "LLImageFormatted" + << " mDecoding " << mDecoding + << " mCodec " << S32(mCodec) + << " mDecoded " << mDecoded + << LL_ENDL; +} + +//---------------------------------------------------------------------------- + +S32 LLImageFormatted::calcDataSize(S32 discard_level) +{ + if (discard_level < 0) + { + discard_level = mDiscardLevel; + } + S32 w = getWidth() >> discard_level; + S32 h = getHeight() >> discard_level; + w = llmax(w, 1); + h = llmax(h, 1); + return w * h * getComponents(); +} + +S32 LLImageFormatted::calcDiscardLevelBytes(S32 bytes) +{ + llassert(bytes >= 0); + S32 discard_level = 0; + while (1) + { + S32 bytes_needed = calcDataSize(discard_level); // virtual + if (bytes_needed <= bytes) + { + break; + } + discard_level++; + if (discard_level > MAX_IMAGE_MIP) + { + return -1; + } + } + return discard_level; +} + + +//---------------------------------------------------------------------------- + +// Subclasses that can handle more than 4 channels should override this function. +bool LLImageFormatted::decodeChannels(LLImageRaw* raw_image,F32 decode_time, S32 first_channel, S32 max_channel) +{ + llassert( (first_channel == 0) && (max_channel == 4) ); + return decode( raw_image, decode_time ); // Loads first 4 channels by default. +} + +//---------------------------------------------------------------------------- + +// virtual +U8* LLImageFormatted::allocateData(S32 size) +{ + LLImageDataLock lock(this); + + U8* res = LLImageBase::allocateData(size); // calls deleteData() + sGlobalFormattedMemory += getDataSize(); + return res; +} + +// virtual +U8* LLImageFormatted::reallocateData(S32 size) +{ + LLImageDataLock lock(this); + + sGlobalFormattedMemory -= getDataSize(); + U8* res = LLImageBase::reallocateData(size); + sGlobalFormattedMemory += getDataSize(); + return res; +} + +// virtual +void LLImageFormatted::deleteData() +{ + LLImageDataLock lock(this); + + if (mDecoding) + { + LL_ERRS() << "LLImageFormatted::deleteData() is called during decoding" << LL_ENDL; + } + sGlobalFormattedMemory -= getDataSize(); + LLImageBase::deleteData(); +} + +//---------------------------------------------------------------------------- + +// virtual +void LLImageFormatted::sanityCheck() +{ + LLImageBase::sanityCheck(); + + if (mCodec >= IMG_CODEC_EOF) + { + LL_ERRS() << "Failed LLImageFormatted::sanityCheck " + << "decoding " << S32(mDecoding) + << "decoded " << S32(mDecoded) + << "codec " << S32(mCodec) + << LL_ENDL; + } +} + +//---------------------------------------------------------------------------- + +bool LLImageFormatted::copyData(U8 *data, S32 size) +{ + LLImageDataLock lock(this); + + if ( data && ((data != getData()) || (size != getDataSize())) ) + { + deleteData(); + allocateData(size); + memcpy(getData(), data, size); /* Flawfinder: ignore */ + } + return true; +} + +// LLImageFormatted becomes the owner of data +void LLImageFormatted::setData(U8 *data, S32 size) +{ + LLImageDataLock lock(this); + + if (data && data != getData()) + { + deleteData(); + setDataAndSize(data, size); // Access private LLImageBase members + + sGlobalFormattedMemory += getDataSize(); + } +} + +void LLImageFormatted::appendData(U8 *data, S32 size) +{ + if (data) + { + LLImageDataLock lock(this); + + if (!getData()) + { + setData(data, size); + } + else + { + S32 cursize = getDataSize(); + S32 newsize = cursize + size; + reallocateData(newsize); + memcpy(getData() + cursize, data, size); + ll_aligned_free_16(data); + } + } +} + +//---------------------------------------------------------------------------- + +bool LLImageFormatted::load(const std::string &filename, int load_size) +{ + resetLastError(); + + S32 file_size = 0; + LLAPRFile infile ; + infile.open(filename, LL_APR_RB, NULL, &file_size); + apr_file_t* apr_file = infile.getFileHandle(); + if (!apr_file) + { + setLastError("Unable to open file for reading", filename); + return false; + } + if (file_size == 0) + { + setLastError("File is empty",filename); + return false; + } + + // Constrain the load size to acceptable values + if ((load_size == 0) || (load_size > file_size)) + { + load_size = file_size; + } + + LLImageDataLock lock(this); + + bool res; + U8 *data = allocateData(load_size); + if (data) + { + apr_size_t bytes_read = load_size; + apr_status_t s = apr_file_read(apr_file, data, &bytes_read); // modifies bytes_read + if (s != APR_SUCCESS || (S32) bytes_read != load_size) + { + deleteData(); + setLastError("Unable to read file",filename); + res = false; + } + else + { + res = updateData(); + } + } + else + { + setLastError("Allocation failure", filename); + res = false; + } + + return res; +} + +bool LLImageFormatted::save(const std::string &filename) +{ + resetLastError(); + + LLAPRFile outfile ; + outfile.open(filename, LL_APR_WB); + if (!outfile.getFileHandle()) + { + setLastError("Unable to open file for writing", filename); + return false; + } + + LLImageDataSharedLock lock(this); + + S32 result = outfile.write(getData(), getDataSize()); + outfile.close() ; + return (result != 0); +} + +S8 LLImageFormatted::getCodec() const +{ + return mCodec; +} + +static void avg4_colors4(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst) +{ + dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2); + dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2); + dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2); + dst[3] = (U8)(((U32)(a[3]) + b[3] + c[3] + d[3])>>2); +} + +static void avg4_colors3(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst) +{ + dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2); + dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2); + dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2); +} + +static void avg4_colors2(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst) +{ + dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2); + dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2); +} + +void LLImageBase::setDataAndSize(U8 *data, S32 size) +{ + ll_assert_aligned(data, 16); + mData = data; + mDataSize = size; +} + +//static +void LLImageBase::generateMip(const U8* indata, U8* mipdata, S32 width, S32 height, S32 nchannels) +{ + llassert(width > 0 && height > 0); + U8* data = mipdata; + S32 in_width = width*2; + for (S32 h=0; h<height; h++) + { + for (S32 w=0; w<width; w++) + { + switch(nchannels) + { + case 4: + avg4_colors4(indata, indata+4, indata+4*in_width, indata+4*in_width+4, data); + break; + case 3: + avg4_colors3(indata, indata+3, indata+3*in_width, indata+3*in_width+3, data); + break; + case 2: + avg4_colors2(indata, indata+2, indata+2*in_width, indata+2*in_width+2, data); + break; + case 1: + *(U8*)data = (U8)(((U32)(indata[0]) + indata[1] + indata[in_width] + indata[in_width+1])>>2); + break; + default: + LL_ERRS() << "generateMmip called with bad num channels" << LL_ENDL; + } + indata += nchannels*2; + data += nchannels; + } + indata += nchannels*in_width; // skip odd lines + } +} + + +//============================================================================ + +//static +F32 LLImageBase::calc_download_priority(F32 virtual_size, F32 visible_pixels, S32 bytes_sent) +{ + F32 w_priority; + + F32 bytes_weight = 1.f; + if (!bytes_sent) + { + bytes_weight = 20.f; + } + else if (bytes_sent < 1000) + { + bytes_weight = 1.f; + } + else if (bytes_sent < 2000) + { + bytes_weight = 1.f/1.5f; + } + else if (bytes_sent < 4000) + { + bytes_weight = 1.f/3.f; + } + else if (bytes_sent < 8000) + { + bytes_weight = 1.f/6.f; + } + else if (bytes_sent < 16000) + { + bytes_weight = 1.f/12.f; + } + else if (bytes_sent < 32000) + { + bytes_weight = 1.f/20.f; + } + else if (bytes_sent < 64000) + { + bytes_weight = 1.f/32.f; + } + else + { + bytes_weight = 1.f/64.f; + } + bytes_weight *= bytes_weight; + + + //LL_INFOS() << "VS: " << virtual_size << LL_ENDL; + F32 virtual_size_factor = virtual_size / (10.f*10.f); + + // The goal is for weighted priority to be <= 0 when we've reached a point where + // we've sent enough data. + //LL_INFOS() << "BytesSent: " << bytes_sent << LL_ENDL; + //LL_INFOS() << "BytesWeight: " << bytes_weight << LL_ENDL; + //LL_INFOS() << "PreLog: " << bytes_weight * virtual_size_factor << LL_ENDL; + w_priority = (F32)log10(bytes_weight * virtual_size_factor); + + //LL_INFOS() << "PreScale: " << w_priority << LL_ENDL; + + // We don't want to affect how MANY bytes we send based on the visible pixels, but the order + // in which they're sent. We post-multiply so we don't change the zero point. + if (w_priority > 0.f) + { + F32 pixel_weight = (F32)log10(visible_pixels + 1)*3.0f; + w_priority *= pixel_weight; + } + + return w_priority; +} + +//============================================================================ |
